Autoimmune disorders: Mechanisms, diagnosis, and the future of therapeutic approaches-review article for healthcare staff about autoantibodies

https://doi.org/10.53730/ijhs.v7nS1.15183

Authors

  • Mohammed Mesfer Musaed Al Khathami KSA, National Guard Health Affairs
  • Zaina Zaki Almohammed KSA, National Guard Health Affairs
  • ‏Ali Abdulaziz Alanzan KSA, National Guard Health Affairs
  • ‏Anood Fhid Alanazi KSA, National Guard Health Affairs
  • Sanad Samah Alharbi KSA, National Guard Health Affairs

Keywords:

Autoantibodies, autoimmune disorders, mechanisms, diagnosis, therapeutic approaches

Abstract

Background: Autoimmune disorders, characterized by the presence of autoantibodies, play a critical role in disease pathogenesis through their interaction with self-antigens. These immunoglobulins can induce inflammation and tissue damage by mediating immune responses against the body’s own cells. Aim: This review aims to provide a comprehensive overview of functional autoantibodies, focusing on their mechanisms of action, origins, and implications in both autoimmune and non-autoimmune conditions. Methods: The review synthesizes findings from recent literature regarding the classification of functional autoantibodies based on their pathogenic mechanisms, including receptor activation, blockade, and neutralization. It also examines the role of tumors, infections, and immunodeficiency in the generation of these autoantibodies. Results: Functional autoantibodies can activate or inhibit receptors, induce receptor internalization, and disrupt protein interactions, contributing to various autoimmune diseases such as Graves' disease and myasthenia gravis. Emerging evidence links functional autoantibodies to non-autoimmune conditions, particularly in the context of infections like COVID-19. Conclusion: A nuanced understanding of functional autoantibodies is essential for advancing diagnostic and therapeutic approaches in autoimmune disorders. Further research is warranted to elucidate their complex roles in health and disease.

Downloads

Download data is not yet available.

References

Schroeder Jr HW, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol 2010;125(2 Suppl 2):S41–52. DOI: https://doi.org/10.1016/j.jaci.2009.09.046

Gleicher N, Barad D, Weghofer A. Functional autoantibodies, a new paradigm in autoimmunity? Autoimmun Rev 2007;7(1):42–5. DOI: https://doi.org/10.1016/j.autrev.2007.06.001

Adams DD. The presence of an abnormal thyroid-stimulating hormone in the serum of some thyrotoxic patients. J Clin Endocrinol Metab 1958;18(7):699–712. DOI: https://doi.org/10.1210/jcem-18-7-699

Meek JC, Jones AE, Lewis UJ, Vanderlaan WP. Characterization of the long-acting thyroid stimulator of Graves’ disease. Proc Natl Acad Sci U S A 1964;52(2):342–9. DOI: https://doi.org/10.1073/pnas.52.2.342

Davies TF, Andersen S, Latif R, Nagayama Y, Barbesino G, Brito M, et al. Graves’ disease. Nat Rev Dis Primers 2020;6(1):52. DOI: https://doi.org/10.1038/s41572-020-0184-y

Smith BR, Pyle GA, Petersen VB, Hall R. Interaction of thyroid-stimulating antibodies with the human thyrotrophin receptor. J Endocrinol 1977;75(3): 401–7. DOI: https://doi.org/10.1677/joe.0.0750401

Abdel Galil SM, Edrees AM, Ajeeb AK, Aldoobi GS, El-Boshy M, Hussain W. Prognostic significance of platelet count in SLE patients. Platelets 2017;28(2): 203–7. DOI: https://doi.org/10.1080/09537104.2016.1214253

Cabral-Marques O, Riemekasten G. Functional autoantibodies targeting G protein-coupled receptors in rheumatic diseases. Nat Rev Rheumatol 2017;13 (11):648–56. DOI: https://doi.org/10.1038/nrrheum.2017.134

Wang EY, Mao T, Klein J, Dai Y, Huck JD, Jaycox JR, et al. Diverse functional autoantibodies in patients with COVID-19. Nature 2021;595(7866):283–8. DOI: https://doi.org/10.1038/s41586-021-03631-y

Ghetie V, Ward ES. Multiple roles for the major histocompatibility complex class I- related receptor FcRn. Annu Rev Immunol 2000;18:739–66. DOI: https://doi.org/10.1146/annurev.immunol.18.1.739

Limas CJ, Goldenberg IF, Limas C. Autoantibodies against beta-adrenoceptors in human idiopathic dilated cardiomyopathy. Circ Res 1989;64(1):97–103. DOI: https://doi.org/10.1161/01.RES.64.1.97

Dragun D, Muller DN, Brasen JH, Fritsche L, Nieminen-Kelha M, Dechend R, et al. Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N Engl J Med 2005;352(6):558–69. DOI: https://doi.org/10.1056/NEJMoa035717

Aharonov A, Abramsky O, Tarrab-Hazdai R, Fuchs S. Humoral antibodies to acetylcholine receptor in patients with myasthenia gravis. Lancet 1975;2(7930): 340–2. DOI: https://doi.org/10.1016/S0140-6736(75)92779-8

Drachman DB, Angus CW, Adams RN, Michelson JD, Hoffman GJ. Myasthenic antibodies cross-link acetylcholine receptors to accelerate degradation. N Engl J Med 1978;298(20):1116–22. DOI: https://doi.org/10.1056/NEJM197805182982004

Lancaster E, Lai M, Peng X, Hughes E, Constantinescu R, Raizer J, et al. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: Case series and characterisation of the antigen. Lancet Neurol 2010;9(1):67–76. DOI: https://doi.org/10.1016/S1474-4422(09)70324-2

Dalmau J, Graus F. Antibody-mediated encephalitis. N Engl J Med 2018;378(9): 840–51. DOI: https://doi.org/10.1056/NEJMra1708712

Nibber A, Mann EO, Pettingill P, Waters P, Irani SR, Kullmann DM, et al. Pathogenic potential of antibodies to the GABA(B) receptor. Epilepsia Open 2017; 2(3):355–9. DOI: https://doi.org/10.1002/epi4.12067

Knight V, Merkel PA, O’Sullivan MD. Anticytokine autoantibodies: Association with infection and immune dysregulation. Antibodies (Basel) 2016;5(1). DOI: https://doi.org/10.3390/antib5010003

de Groot R, Lane DA, Crawley JT. The ADAMTS13 metalloprotease domain: Roles of subsites in enzyme activity and specificity. Blood 2010;116(16):3064–72. DOI: https://doi.org/10.1182/blood-2009-12-258780

Thomas MR, de Groot R, Scully MA, Crawley JT. Pathogenicity of anti- ADAMTS13 autoantibodies in acquired thrombotic thrombocytopenic purpura. EBioMedicine 2015;2(8):942–52. DOI: https://doi.org/10.1016/j.ebiom.2015.06.007

Anhalt GJ, Labib RS, Voorhees JJ, Beals TF, Diaz LA. Induction of pemphigus in neonatal mice by passive transfer of IgG from patients with the disease. N Engl J Med 1982;306(20):1189–96. DOI: https://doi.org/10.1056/NEJM198205203062001

Kuchroo VK, Ohashi PS, Sartor RB, Vinuesa CG. Dysregulation of immune homeostasis in autoimmune diseases. Nat Med 2012;18(1):42–7. DOI: https://doi.org/10.1038/nm.2621

Petersen F, Yue X, Riemekasten G, Yu X. Dysregulated homeostasis of target tissues or autoantigens - A novel principle in autoimmunity. Autoimmun Rev 2017;16(6):602–11. DOI: https://doi.org/10.1016/j.autrev.2017.04.006

Tormoehlen LM, Pascuzzi RM. Thymoma, myasthenia gravis, and other paraneoplastic syndromes. Hematol Oncol Clin North Am 2008;22(3):509–26. DOI: https://doi.org/10.1016/j.hoc.2008.03.004

Romi F. Thymoma in myasthenia gravis: From diagnosis to treatment. Autoimmune Dis 2011;2011:474512. DOI: https://doi.org/10.4061/2011/474512

Marx A, Kirchner T, Hoppe F, O’Connor R, Schalke B, Tzartos S, et al. Proteins with epitopes of the acetylcholine receptor in epithelial cell cultures of thymomas in myasthenia gravis. Am J Pathol 1989;134(4):865–77.

Romi F, Bo L, Skeie GO, Myking A, Aarli JA, Gilhus NE. Titin and ryanodine receptor epitopes are expressed in cortical thymoma along with costimulatory molecules. J Neuroimmunol 2002;128(1–2):82–9. DOI: https://doi.org/10.1016/S0165-5728(02)00145-5

Gilhus NE, Tzartos S, Evoli A, Palace J, Burns TM, Verschuuren J. Myasthenia gravis. Nat Rev Dis Primers 2019;5(1):30. DOI: https://doi.org/10.1038/s41572-019-0079-y

Geng G, Yu X, Jiang J, Yu X. Aetiology and pathogenesis of paraneoplastic autoimmune disorders. Autoimmun Rev 2020;19(1):102422. DOI: https://doi.org/10.1016/j.autrev.2019.102422

Dalmau J, Tuzun E, Wu HY, Masjuan J, Rossi JE, Voloschin A, et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol 2007;61(1):25–36. DOI: https://doi.org/10.1002/ana.21050

Linnoila J, Pulli B, Armangue T, Planaguma J, Narsimhan R, Schob S, et al. Mouse model of anti-NMDA receptor post-herpes simplex encephalitis. Neurol Neuroimmunol Neuroinflamm 2019;6(2):e529. DOI: https://doi.org/10.1212/NXI.0000000000000529

Nosadini M, Mohammad SS, Corazza F, Ruga EM, Kothur K, Perilongo G, et al. Herpes simplex virus-induced anti-N-methyl-d-aspartate receptor encephalitis: A systematic literature review with analysis of 43 cases. Dev Med Child Neurol 2017;59(8):796–805. DOI: https://doi.org/10.1111/dmcn.13448

Levin MJ, Hoebeke J. Cross-talk between anti-beta1-adrenoceptor antibodies in dilated cardiomyopathy and Chagas’ heart disease. Autoimmunity 2008;41(6): 429–33. DOI: https://doi.org/10.1080/08916930802031702

Desailloud R, Hober D. Viruses and thyroiditis: An update. Virol J 2009;6:5. DOI: https://doi.org/10.1186/1743-422X-6-5

Finnish-German AC. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 1997;17(4): 399–403. DOI: https://doi.org/10.1038/ng1297-399

Fishman D, Kisand K, Hertel C, Rothe M, Remm A, Pihlap M, et al. Autoantibody repertoire in APECED patients targets two distinct subgroups of proteins. Front Immunol 2017;8:976. DOI: https://doi.org/10.3389/fimmu.2017.00976

Meager A, Visvalingam K, Peterson P, Moll K, Murumagi A, Krohn K, et al. Anti- interferon autoantibodies in autoimmune polyendocrinopathy syndrome type 1. PLoS Med 2006;3(7). e289. [41] Puel A, Doffinger R, Natividad A, Chrabieh M, Barcenas-Morales G, Picard C, et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med 2010;207(2):291–7. DOI: https://doi.org/10.1084/jem.20091983

Kisand K, Boe Wolff AS, Podkrajsek KT, Tserel L, Link M, Kisand KV, et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med 2010;207(2):299–308. DOI: https://doi.org/10.1084/jem.20091669

Cabral-Marques O, Marques A, Giil LM, De Vito R, Rademacher J, Gunther J, et al. GPCR-specific autoantibody signatures are associated with physiological and pathological immune homeostasis. Nat Commun 2018;9(1):5224. DOI: https://doi.org/10.1038/s41467-018-07598-9

Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A, Fallahi P. Autoimmune thyroid disorders. Autoimmun Rev 2015;14(2):174–80. DOI: https://doi.org/10.1016/j.autrev.2014.10.016

Girgis CM, Champion BL, Wall JR. Current concepts in graves’ disease. Ther Adv Endocrinol Metab 2011;2(3):135–44. DOI: https://doi.org/10.1177/2042018811408488

Latrofa F, Chazenbalk GD, Pichurin P, Chen CR, McLachlan SM, Rapoport B. Affinity-enrichment of thyrotropin receptor autoantibodies from Graves’ patients and normal individuals provides insight into their properties and possible origin from natural antibodies. J Clin Endocrinol Metab 2004;89(9):4734–45. DOI: https://doi.org/10.1210/jc.2003-032068

Weetman AP, Yateman ME, Ealey PA, Black CM, Reimer CB, Williams Jr RC, et al. Thyroid-stimulating antibody activity between different immunoglobulin G subclasses. J Clin Invest 1990;86(3):723–7. DOI: https://doi.org/10.1172/JCI114768

Endo K, Kasagi K, Konishi J, Ikekubo K, Okuno T, Takeda Y, et al. Detection and properties of TSH-binding inhibitor immunoglobulins in patients with Graves’ disease and Hashimoto’s thyroiditis. J Clin Endocrinol Metab 1978;46(5):734–9. DOI: https://doi.org/10.1210/jcem-46-5-734

Evans M, Sanders J, Tagami T, Sanders P, Young S, Roberts E, et al. Monoclonal autoantibodies to the TSH receptor, one with stimulating activity and one with blocking activity, obtained from the same blood sample. Clin Endocrinol (Oxf) 2010;73(3):404–12. DOI: https://doi.org/10.1111/j.1365-2265.2010.03831.x

Cho BY, Shong YK, Lee HK, Koh CS, Min HK. Graves’ hyperthyroidism following primary hypothyroidism: Sequential changes in various activities of thyrotropin receptor antibodies. Acta Endocrinol 1989;120(4):447–50. DOI: https://doi.org/10.1530/acta.0.1200447

Takasu N, Matsushita M. Changes of TSH-stimulation blocking antibody (TSBAb) and thyroid stimulating antibody (TSAb) over 10 years in 34 TSBAb-positive patients with hypothyroidism and in 98 TSAb-positive Graves’ patients with hyperthyroidism: Reevaluation of TSBAb and TSAb in TSH-receptor-antibody (TRAb)-positive patients. J Thyroid Res 2012;2012:182176. DOI: https://doi.org/10.1155/2012/182176

Dresser L, Wlodarski R, Rezania K, Soliven B. Myasthenia gravis: Epidemiology, pathophysiology and clinical manifestations. J Clin Med 2021;10(11). DOI: https://doi.org/10.3390/jcm10112235

Lazaridis K, Tzartos SJ. Autoantibody specificities in myasthenia gravis; implications for improved diagnostics and therapeutics. Front Immunol 2020;11: 212. DOI: https://doi.org/10.3389/fimmu.2020.00212

Lindstrom JM, Engel AG, Seybold ME, Lennon VA, Lambert EH. Pathological mechanisms in experimental autoimmune myasthenia gravis. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine recepotr antibodies. J Exp Med 1976;144(3):739–53. DOI: https://doi.org/10.1084/jem.144.3.739

Drachman DB, Adams RN, Josifek LF, Self SG. Functional activities of autoantibodies to acetylcholine receptors and the clinical severity of myasthenia gravis. N Engl J Med 1982;307(13):769–75. DOI: https://doi.org/10.1056/NEJM198209233071301

Higuchi O, Hamuro J, Motomura M, Yamanashi Y. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol 2011;69 (2):418–22. DOI: https://doi.org/10.1002/ana.22312

Shen C, Lu Y, Zhang B, Figueiredo D, Bean J, Jung J, et al. Antibodies against low- density lipoprotein receptor-related protein 4 induce myasthenia gravis. J Clin Invest 2013;123(12):5190–202. DOI: https://doi.org/10.1172/JCI66039

Koneczny I, Stevens JA, De Rosa A, Huda S, Huijbers MG, Saxena A, et al. IgG4 autoantibodies against muscle-specific kinase undergo Fab-arm exchange in myasthenia gravis patients. J Autoimmun 2017;77:104–15. DOI: https://doi.org/10.1016/j.jaut.2016.11.005

Urriola N, Adelstein S. Autoimmune autonomic ganglionopathy: Ganglionic acetylcholine receptor autoantibodies. Autoimmun Rev 2022;21(2):102988. DOI: https://doi.org/10.1016/j.autrev.2021.102988

Vernino S, Low PA, Fealey RD, Stewart JD, Farrugia G, Lennon VA. Autoantibodies to ganglionic acetylcholine receptors in autoimmune autonomic neuropathies. N Engl J Med 2000;343(12):847–55. DOI: https://doi.org/10.1056/NEJM200009213431204

Lennon VA, Ermilov LG, Szurszewski JH, Vernino S. Immunization with neuronal nicotinic acetylcholine receptor induces neurological autoimmune disease. J Clin Invest 2003;111(6):907–13. DOI: https://doi.org/10.1172/JCI17429

Vernino S, Ermilov LG, Sha L, Szurszewski JH, Low PA, Lennon VA. Passive transfer of autoimmune autonomic neuropathy to mice. J Neurosci 2004;24(32): 7037–42. DOI: https://doi.org/10.1523/JNEUROSCI.1485-04.2004

Vernino S, Low PA, Lennon VA. Experimental autoimmune autonomic neuropathy. J Neurophysiol 2003;90(3):2053–9. DOI: https://doi.org/10.1152/jn.00408.2003

Kitamura T, Tanaka N, Watanabe J, Uchida Kanegasaki S, Yamada Y, et al. Idiopathic pulmonary alveolar proteinosis as an autoimmune disease with neutralizing antibody against granulocyte/macrophage colony-stimulating factor. J Exp Med 1999;190(6):875–80. DOI: https://doi.org/10.1084/jem.190.6.875

McCarthy C, Carey BC, Trapnell BC. Autoimmune pulmonary alveolar proteinosis. Am J Respir Crit Care Med 2022;205(9):1016–35. DOI: https://doi.org/10.1164/rccm.202112-2742SO

Rosen SH, Castleman B, Liebow AA. Pulmonary alveolar proteinosis. N Engl J Med 1958;258(23):1123–42. DOI: https://doi.org/10.1056/NEJM195806052582301

Uchida K, Nakata K, Suzuki T, Luisetti M, Watanabe M, Koch DE, et al. Granulocyte/macrophage-colony-stimulating factor autoantibodies and myeloid cell immune functions in healthy subjects. Blood 2009;113(11):2547–56. DOI: https://doi.org/10.1182/blood-2009-05-155689

Means Jr RT. Pure red cell aplasia. Blood 2016;128(21):2504–9. DOI: https://doi.org/10.1182/blood-2016-05-717140

Casadevall N, Dupuy E, Molho-Sabatier P, Tobelem G, Varet B, Mayeux P. Autoantibodies against erythropoietin in a patient with pure red-cell aplasia. N Engl J Med 1996;334(10):630–3. DOI: https://doi.org/10.1056/NEJM199603073341004

Mytych DT, Barger TE, King C, Grauer S, Haldankar R, Hsu E, et al. Development and characterization of a human antibody reference panel against erythropoietin suitable for the standardization of ESA immunogenicity testing. J Immunol Methods 2012;382(1–2):129–41. DOI: https://doi.org/10.1016/j.jim.2012.05.013

Kreye J, Wenke NK, Chayka M, Leubner J, Murugan R, Maier N, et al. Human cerebrospinal fluid monoclonal N-methyl-D-aspartate receptor autoantibodies are sufficient for encephalitis pathogenesis. Brain 2016;139(Pt 10):2641–52. DOI: https://doi.org/10.1093/brain/aww208

Mikasova L, De Rossi P, Bouchet D, Georges F, Rogemond V, Didelot A, et al. Disrupted surface cross-talk between NMDA and ephrin-B2 receptors in anti- NMDA encephalitis. Brain 2012;135(Pt 5):1606–21. DOI: https://doi.org/10.1093/brain/aws092

Tuzun E, Zhou L, Baehring JM, Bannykh S, Rosenfeld MR, Dalmau J. Evidence for antibody-mediated pathogenesis in anti-NMDAR encephalitis associated with ovarian teratoma. Acta Neuropathol 2009;118(6):737–43. DOI: https://doi.org/10.1007/s00401-009-0582-4

Haselmann H, Mannara F, Werner C, Planaguma J, Miguez-Cabello F, Schmidl L, et al. Human autoantibodies against the AMPA receptor subunit GluA2 induce receptor reorganization and memory dysfunction. Neuron 2018;100(1):91–105 e9. DOI: https://doi.org/10.1016/j.neuron.2018.07.048

Lai M, Hughes EG, Peng X, Zhou L, Gleichman AJ, Shu H, et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol 2009;65(4):424–34. DOI: https://doi.org/10.1002/ana.21589

Irani SR, Alexander S, Waters P, Kleopa KA, Pettingill P, Zuliani L, et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 2010;133(9):2734–48. DOI: https://doi.org/10.1093/brain/awq213

Published

15-01-2023

How to Cite

Al Khathami, M. M. M., Almohammed, Z. Z., Alanzan, ‏Ali A., Alanazi, ‏Anood F., & Alharbi, S. S. (2023). Autoimmune disorders: Mechanisms, diagnosis, and the future of therapeutic approaches-review article for healthcare staff about autoantibodies. International Journal of Health Sciences, 7(S1), 3523–3537. https://doi.org/10.53730/ijhs.v7nS1.15183

Issue

Section

Peer Review Articles

Most read articles by the same author(s)

1 2 > >>