EMS and paramedic management of respiratory distress: Prehospital use of CPAP and BiPAP

https://doi.org/10.53730/ijhs.v4nS1.15219

Authors

  • Saleh AbdulLatif Al-Jasser KSA, National Guard Health Affairs
  • Sultan Sulaiman E Alharbi KSA, National Guard Health Affairs
  • Abdullah Atiyyan Albishri KSA, National Guard Health Affairs
  • Sawsan Ahmad Ghassap KSA, National Guard Health Affairs
  • Alaa Ibrahim Rashad KSA, National Guard Health Affairs
  • Anoud Saud Alanizi KSA, National Guard Health Affairs
  • Mohammed Mesfer Musaed AL Khathami KSA, National Guard Health Affairs
  • Hind Saad Alareefi KSA, National Guard Health Affairs
  • Hassan Mohammed Brahim Alshammari KSA, National Guard Health Affairs
  • Bandar Mohammad Abdullah Alkhathami KSA, National Guard Health Affairs
  • Nawaf Subhi Dobayan Alenazi KSA, National Guard Health Affairs
  • Fares Khalid Mohammed Alhazmi KSA, National Guard Health Affairs
  • Ahmad Mohammed Isa Gaddourah KSA, National Guard Health Affairs
  • Hamad Dafalh Alrakhimy KSA, National Guard Health Affairs

Keywords:

ARDS, CPAP, BiPAP, respiratory distress, emergency medical services, non-invasive ventilation

Abstract

Background: Acute Respiratory Distress Syndrome (ARDS), first identified in the 1960s, manifests as acute hypoxic respiratory failure due to diverse causes like infection and trauma. The incidence varies globally, affecting 7.2 to 34 per 100,000 person-years. While ARDS's historical mortality rate was around 60%, advancements in critical care have reduced it to 26-35%. Despite improvements, ARDS accounts for approximately 75,000 U.S. deaths annually and 3 million global cases, contributing significantly to ICU admissions and mechanical ventilation needs. Aim: This article aims to explore the prehospital management of respiratory distress in ARDS patients, focusing on the effectiveness of Continuous Positive Airway Pressure (CPAP) and Bilevel Positive Airway Pressure (BiPAP) in the emergency medical services (EMS) setting. The review focus also on radiological picture of ARDS. Methods: A comprehensive review of existing literature was conducted, analyzing studies on CPAP and BiPAP application in ARDS management prehospital settings. The review encompasses efficacy, clinical outcomes, and safety of these non-invasive ventilation strategies. Results: Evidence indicates that both CPAP and BiPAP are beneficial in improving oxygenation and reducing the need for intubation in ARDS patients. These interventions also enhance patient comfort and can stabilize conditions during transport to definitive care.

Downloads

Download data is not yet available.

References

Ashbaugh D, Bigelow DB, Petty T, Levine B. Acute respiratory distress in adults. Lancet. 1967;290(7511):319–323. DOI: https://doi.org/10.1016/S0140-6736(67)90168-7

Luhr OR, Antonsen K, Karlsson M, et al. Incidence and mortality after acute respiratory failure and acute respiratory distress syndrome in Sweden, Denmark, and Iceland. Am J Respir Crit Care Med. 1999;159(6):1849–1861. DOI: https://doi.org/10.1164/ajrccm.159.6.9808136

Villar J. What is the acute respiratory distress syndrome? Respir Care. 2011;56(10):1539–1545. DOI: https://doi.org/10.4187/respcare.01395

Bersten AD, Edibam C, Hunt T, et al. Incidence and mortality of acute lung injury and the acute respiratory distress syndrome in three Australian States. Am J Respir Crit Care Med. 2002;165(4):443–448. DOI: https://doi.org/10.1164/ajrccm.165.4.2101124

Stapleton RD, Wang BM, Hudson LD, Rubenfeld GD, Caldwell ES, Steinberg KP. Causes and timing of death in patients with ARDS. Chest. 2005;128(2):525–532. DOI: https://doi.org/10.1378/chest.128.2.525

Erickson SE, Martin GS, Davis JL, Matthay MA, Eisner MD, Network NNA. Recent trends in acute lung injury mortality: 1996–-2005. Crit Care Med. 2009;37(5):1574–1579. DOI: https://doi.org/10.1097/CCM.0b013e31819fefdf

Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353(16):1685–1693. DOI: https://doi.org/10.1056/NEJMoa050333

Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800. DOI: https://doi.org/10.1001/jama.2016.0291

Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3 pt 1):818–824. DOI: https://doi.org/10.1164/ajrccm.149.3.7509706

Ranieri VM, Rubenfeld GD, Thompson BT et al; ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2526–2533. DOI: https://doi.org/10.1001/jama.2012.5669

Ferguson ND, Fan E, Camporota L, et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012;38(10):1573–1582. DOI: https://doi.org/10.1007/s00134-012-2682-1

Katzenstein AL, Bloor CM, Leibow AA. Diffuse alveolar damage – the role of oxygen, shock, and related factors. A review. Am J Pathol. 1976;85(1):209–228.

Piantadosi CA, Schwartz DA. The acute respiratory distress syndrome. Ann Intern Med. 2004;141(6):460–470. DOI: https://doi.org/10.7326/0003-4819-141-6-200409210-00012

Anderson WR, Thielen K. Correlative study of adult respiratory distress syndrome by light, scanning, and transmission electron microscopy. Ultrastruct Pathol. 1992;16(6):615–628. DOI: https://doi.org/10.3109/01913129209023751

Pratt PC, Vollmer RT, Shelburne JD, Crapo JD. Pulmonary morphology in a multihospital collaborative extracorporeal membrane oxygenation project. I. Light microscopy. Am J Pathol. 1979;95(1):191–214.

Bachofen M, Weibel ER. Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia. Am Rev Respir Dis. 1977;116(4):589–615. DOI: https://doi.org/10.1164/arrd.1977.116.4.589

Pierrakos C, Karanikolas M, Scolletta S, Karamouzos V, Velissaris D. Acute respiratory distress syndrome: pathophysiology and therapeutic options. J Clin Med Res. 2012;4(1):7–16. DOI: https://doi.org/10.4021/jocmr761w

de Hemptinne Q, Remmelink M, Brimioulle S, Salmon I, Vincent JL. ARDS: a clinicopathological confrontation. Chest. 2009;135(4):944–949. DOI: https://doi.org/10.1378/chest.08-1741

Sarmiento X, Guardiola JJ, Almirall J, et al. Discrepancy between clinical criteria for diagnosing acute respiratory distress syndrome secondary to community acquired pneumonia with autopsy findings of diffuse alveolar damage. Respir Med. 2011;105(8):1170–1175. DOI: https://doi.org/10.1016/j.rmed.2011.04.001

Esteban A, Fernández-Segoviano P, Frutos-Vivar F, et al. Comparison of clinical criteria for the acute respiratory distress syndrome with autopsy findings. Ann Intern Med. 2004;141(6):440–445. DOI: https://doi.org/10.7326/0003-4819-141-6-200409210-00009

Pinheiro BV, Muraoka FS, Assis RVC, et al. Accuracy of clinical diagnosis of acute respiratory distress syndrome in comparison with autopsy findings. J Bras Pneumol. 2007;33(4):423–428. DOI: https://doi.org/10.1590/S1806-37132007000400011

Kao KC, Hu HC, Chang CH, et al. Diffuse alveolar damage associated mortality in selected acute respiratory distress syndrome patients with open lung biopsy. Crit Care. 2015;19(1):228. DOI: https://doi.org/10.1186/s13054-015-0949-y

Thompson BT, Michael AM. The Berlin definition of ARDS versus pathological evidence of diffuse alveolar damage. Am J Respir crit Care Med. 2013;187(7):675–677. DOI: https://doi.org/10.1164/rccm.201302-0385ED

Hudson LD, Milberg JA, Anardi D, Maunder RJ. Clinical risks for development of the acute respiratory distress syndrome. Am J Respir crit Care Med. 1995;151(2 pt 1):293–301. DOI: https://doi.org/10.1164/ajrccm.151.2.7842182

Pepe PE, Potkin RT, Reus DH, Hudson LD, Carrico CJ. Clinical predictors of the adult respiratory distress syndrome. Am J Surg. 1982;144(1):124–130. DOI: https://doi.org/10.1016/0002-9610(82)90612-2

Eworuke E, Major JM, Gilbert McClain LI. National incidence rates for acute respiratory distress syndrome (ARDS) and ARDS cause-specific factors in the United States (2006-2014). J Crit Care. 2018;47:192–197. DOI: https://doi.org/10.1016/j.jcrc.2018.07.002

Marshall RP, Webb S, Hill MR, Humphries SE, Laurent GJ. Genetic polymorphisms associated with susceptibility and outcome in ARDS. Chest. 2002;121(3 suppl):68S–69S. DOI: https://doi.org/10.1378/chest.121.3_suppl.68S

Marshall RP, Webb S, Bellingan GJ, et al. Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am J Respir crit Care Med. 2002;166(5):646–650. DOI: https://doi.org/10.1164/rccm.2108086

Copland IB, Kavanagh BP, Engelberts D, McKerlie C, Belik J, Post M. Early changes in lung gene expression due to high tidal volume. Am J Respir crit Care Med. 2003;168(9):1051–1059. DOI: https://doi.org/10.1164/rccm.200208-964OC

Grigoryev DN, Finigan JH, Hassoun P, Garcia JGN. Science review: searching for gene candidates in acute lung injury. Crit Care. 2004;8(6):440. DOI: https://doi.org/10.1186/cc2901

Mikkelsen ME, Shah CV, Meyer NJ, et al. The epidemiology of acute respiratory distress syndrome in patients presenting to the emergency department with severe sepsis. Shock. 2013;40(5):375–381. DOI: https://doi.org/10.1097/SHK.0b013e3182a64682

Gajic O, Dabbagh O, Park PK, et al. Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study. Am J Respir crit Care Med. 2011;183(4):462–470. DOI: https://doi.org/10.1164/rccm.201004-0549OC

Ferguson ND, Frutos-Vivar F, Esteban A, et al. Clinical risk conditions for acute lung injury in the intensive care unit and hospital ward: a prospective observational study. Crit Care. 2007;11(5):R96. DOI: https://doi.org/10.1186/cc6113

Fein AM, Calalang-Colucci MG. Acute lung injury and acute respiratory distress syndrome in sepsis and septic shock. Crit Care Clin. 2000;16(2):289–317. DOI: https://doi.org/10.1016/S0749-0704(05)70111-1

Pelosi P, D’Onofrio D, Chiumello D, et al. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J Suppl. 2003;42:48s–56s. DOI: https://doi.org/10.1183/09031936.03.00420803

Sheu CC, Gong MN, Zhai R, et al. The influence of infection sites on development and mortality of ARDS. Intensive Care Med. 2010;36(6):963–970. DOI: https://doi.org/10.1007/s00134-010-1851-3

Kojicic M, Li G, Hanson AC, et al. Risk factors for the development of acute lung injury in patients with infectious pneumonia. Crit Care. 2012;16(2):R46. DOI: https://doi.org/10.1186/cc11247

Lee A, Festic E, Park PK, et al. Characteristics and outcomes of patients hospitalized following pulmonary aspiration. Chest. 2014;146(4):899–907. DOI: https://doi.org/10.1378/chest.13-3028

Treggiari MM, Hudson LD, Martin DP, Weiss NS, Caldwell E, Rubenfeld G. Effect of acute lung injury and acute respiratory distress syndrome on outcome in critically ill trauma patients. Crit Care Med. 2004;32(2):327–331. DOI: https://doi.org/10.1097/01.CCM.0000108870.09693.42

Calfee CS, Eisner MD, Ware LB, et al. Trauma-associated lung injury differs clinically and biologically from acute lung injury due to other clinical disorders. Crit Care Med. 2007;35(10):2243–2250. DOI: https://doi.org/10.1097/01.CCM.0000280434.33451.87

Moss M, Gillespie MK, Ackerson L, Moore FA, Moore EE, Parsons PE. Endothelial cell activity varies in patients at risk for the adult respiratory distress syndrome. Crit Care Med. 1996;24(11):1782–1786. DOI: https://doi.org/10.1097/00003246-199611000-00004

Toy P, Popovsky MA, Abraham E, et al. Transfusion-related acute lung injury: definition and review. Crit Care Med. 2005;33(4):721–726. DOI: https://doi.org/10.1097/01.CCM.0000159849.94750.51

Zilberberg MD, Carter C, Lefebvre P, et al. Red blood cell transfusions and the risk of acute respiratory distress syndrome among the critically ill: a cohort study. Crit Care. 2007;11(3):R63. DOI: https://doi.org/10.1186/cc5934

Khan H, Belsher J, Yilmaz M, et al. Fresh-frozen plasma and platelet transfusions are associated with development of acute lung injury in critically ill medical patients. Chest. 2007;131(5):1308–1314. DOI: https://doi.org/10.1378/chest.06-3048

Levitt JE, Calfee CS, Goldstein BA, Vojnik R, Matthay MA. Early acute lung injury: criteria for identifying lung injury prior to the need for positive pressure ventilation*. Crit Care Med. 2013;41(8):1929–1937. DOI: https://doi.org/10.1097/CCM.0b013e31828a3d99

Crader KM, Repine DJJ, Repine JE. Breath biomarkers and the acute respiratory distress syndrome. J Pulm Respir Med. 2012;2(1):1–9. DOI: https://doi.org/10.1097/00075198-199602000-00011

Donnelly SC, Strieter RM, Kunkel SL, et al. Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet. 1993;341(8846):643–647. DOI: https://doi.org/10.1016/0140-6736(93)90416-E

Villar J, Pérez-Méndez L, Espinosa E, et al. Serum lipopolysaccharide binding protein levels predict severity of lung injury and mortality in patients with severe sepsis. PLoS One. 2009;4(8):e6818. DOI: https://doi.org/10.1371/journal.pone.0006818

Agrawal A, Matthay MA, Kangelaris KN, et al. Plasma angiopoietin-2 predicts the onset of acute lung injury in critically ill patients. Am J Respir Crit Care Med. 2013;187(7):736–742. DOI: https://doi.org/10.1164/rccm.201208-1460OC

Terpstra ML, Aman J, van Nieuw Amerongen GP, Groeneveld ABJ. Plasma biomarkers for acute respiratory distress syndrome: a systematic review and meta-analysis*. Crit Care Med. 2014;42(3):691–700. DOI: https://doi.org/10.1097/01.ccm.0000435669.60811.24

Calfee CS, Ware LB, Glidden DV, et al. Use of risk reclassification with multiple biomarkers improves mortality prediction in acute lung injury. Crit Care Med. 2011;39(4):711–717. DOI: https://doi.org/10.1097/CCM.0b013e318207ec3c

Ware LB, Koyama T, Billheimer DD, et al. Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury. Chest. 2010;137(2):288–296. DOI: https://doi.org/10.1378/chest.09-1484

Iscimen R, Cartin-Ceba R, Yilmaz M, et al. Risk factors for the development of acute lung injury in patients with septic shock: an observational cohort study. Crit Care Med. 2008;36(5):1518–1522. DOI: https://doi.org/10.1097/CCM.0b013e31816fc2c0

Jia X, Malhotra A, Saeed M, Mark RG, Talmor D. Risk factors for ARDS in patients receiving mechanical ventilation for greater than 48 hours. Chest. 2008;133(4):853–861. DOI: https://doi.org/10.1378/chest.07-1121

Yao S, Mao T, Fang W, Xu M, Chen W. Incidence and risk factors for acute lung injury after open thoracotomy for thoracic diseases. J Thorac Dis. 2013;5(4):455–460.

Evans RG, Naidu B. Does a conservative fluid management strategy in the perioperative management of lung resection patients reduce the risk of acute lung injury? Interact Cardiovasc Thorac Surg. 2012;15(3):498–504. DOI: https://doi.org/10.1093/icvts/ivs175

Hughes CG, Weavind L, Banerjee A, Mercaldo ND, Schildcrout JS, Pandharipande PP. Intraoperative risk factors for acute respiratory distress syndrome in critically ill patients. Anesth Analg. 2010;111(2):464–467. DOI: https://doi.org/10.1213/ANE.0b013e3181d8a16a

Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–2575. DOI: https://doi.org/10.1056/NEJMoa062200

Rosenberg AL, Dechert RE, Park PK, Bartlett RH, Network NNA. Review of a large clinical series: association of cumulative fluid balance on outcome in acute lung injury: a retrospective review of the ARDSnet tidal volume study cohort. J Intensive Care Med. 2009;24(1):35–46. DOI: https://doi.org/10.1177/0885066608329850

Seeley EJ. Fluid therapy during acute respiratory distress syndrome: less is more, simplified*. Crit Care Med. 2015;43(2):477–478. DOI: https://doi.org/10.1097/CCM.0000000000000794

Gong MN, Thompson BT, Williams P, Pothier L, Boyce PD, Christiani DC. Clinical predictors of and mortality in acute respiratory distress syndrome: potential role of red cell transfusion. Crit Care Med. 2005;33(6):1191–1198. DOI: https://doi.org/10.1097/01.CCM.0000165566.82925.14

Hébert PC, Wells G, Blajchman MA, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion requirements in critical care investigators, canadian critical care trials group. N Engl J Med. 1999;340(6):409–417. DOI: https://doi.org/10.1056/NEJM199902113400601

Park PK, Cannon JW, Ye W, et al. Transfusion strategies and development of acute respiratory distress syndrome in combat casualty care. J Trauma Acute Care Surg. 2013;75(2 suppl 2):S238–S246. DOI: https://doi.org/10.1097/TA.0b013e31829a8c71

Popovsky MA, Moore SB. Diagnostic and pathogenetic considerations in transfusion-related acute lung injury. Transfusion. 1985;25(6):573–577. DOI: https://doi.org/10.1046/j.1537-2995.1985.25686071434.x

Curtis BR, McFarland JG. Mechanisms of transfusion-related acute lung injury (TRALI): anti-leukocyte antibodies. Critical care medicine. 2006;34(5 suppl):S118–S123. DOI: https://doi.org/10.1097/01.CCM.0000214293.72918.D8

Vlaar AP, Juffermans NP. Transfusion-related acute lung injury: a clinical review. Lancet. 2013;382(9896):984–994. DOI: https://doi.org/10.1016/S0140-6736(12)62197-7

Toy P, Gajic O, Bacchetti P, et al. Transfusion-related acute lung injury: incidence and risk factors. Blood. 2012;119(7):1757–1767. DOI: https://doi.org/10.1182/blood-2011-08-370932

Gajic O, Rana R, Winters JL, et al. Transfusion-related acute lung injury in the critically ill: prospective nested case–control study. Am J Respir Crit Care Med. 2007;176(9):886–891. DOI: https://doi.org/10.1164/rccm.200702-271OC

Price TH. Standards for Blood Banks and Transfusion Services. Bethesda, MD: AABB; 2008.

Eder AF, Herron R, Strupp A, et al. Transfusion-related acute lung injury surveillance (2003-2005) and the potential impact of the selective use of plasma from male donors in the American Red Cross. Transfusion. 2007;47(4):599–607. DOI: https://doi.org/10.1111/j.1537-2995.2007.01102.x

Silliman CC, Thurman GW, Ambruso DR. Stored blood components contain agents that prime the neutrophil NADPH oxidase through the platelet-activating-factor receptor. Vox Sanguinis. 1992;63(2):133–136. DOI: https://doi.org/10.1159/000462246

Tung JP, Fraser JF, Nataatmadja M, et al. Age of blood and recipient factors determine the severity of transfusion-related acute lung injury (TRALI). Crit Care. 2012;16(1):R19. DOI: https://doi.org/10.1186/cc11178

Vlaar APJ, Binnekade JM, Prins D, et al. Risk factors and outcome of transfusion-related acute lung injury in the critically ill: a nested case–control study. Crit Care Med. 2010;38(3):771–778. DOI: https://doi.org/10.1097/CCM.0b013e3181cc4d4b

Middelburg RA, Borkent-Raven BA, Borkent B, et al. Storage time of blood products and transfusion-related acute lung injury. Transfusion. 2012;52(3):658–667. DOI: https://doi.org/10.1111/j.1537-2995.2011.03352.x

Kor DJ, Kashyap R, Weiskopf RB, et al. Fresh red blood cell transfusion and short-term pulmonary, immunologic, and coagulation status: a randomized clinical trial. Am J Respir Crit Care Med. 2012;185(8):842–850. DOI: https://doi.org/10.1164/rccm.201107-1332OC

Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA. 2018;319(7):698–710. DOI: https://doi.org/10.1001/jama.2017.21907

Howell MD, Davis AM. Management of ARDS in adults. JAMA. 2018;319(7):711–712. DOI: https://doi.org/10.1001/jama.2018.0307

Fan E, Del Sorbo L, Goligher EC, et al. An official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195(9):1253–1263. DOI: https://doi.org/10.1164/rccm.19511erratum

Ferguson ND, Cook DJ, Guyatt GH, et al. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368(9):795–805. DOI: https://doi.org/10.1056/NEJMoa1215554

Lall R, Hamilton P, Young D, et al. A randomised controlled trial and cost-effectiveness analysis of high-frequency oscillatory ventilation against conventional artificial ventilation for adults with acute respiratory distress syndrome. The OSCAR (OSCillation in ARDS) study. Health Technol Assess. 2015;19(23):1–177, vii. DOI: https://doi.org/10.3310/hta19230

Sud S, Sud M, Friedrich JO, et al. High-frequency oscillatory ventilation versus conventional ventilation for acute respiratory distress syndrome. Cochrane Database Syst Rev. 2016;(4):CD004085. DOI: https://doi.org/10.1002/14651858.CD004085.pub4

Combes A, Hajage D, Capellier G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965–1975. DOI: https://doi.org/10.1056/NEJMoa1800385

Cavalcanti AB, Suzumura EA, Laranjeira LN, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2017;318(14):1335–1345. DOI: https://doi.org/10.1001/jama.2017.14171

Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–755. DOI: https://doi.org/10.1056/NEJMsa1410639

Grasso S, Fanelli V, Cafarelli A, et al. Effects of high versus low positive end-expiratory pressures in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2005;171(9):1002–1008. DOI: https://doi.org/10.1164/rccm.200407-940OC

Vieira SR, Puybasset L, Lu Q, et al. A scanographic assessment of pulmonary morphology in acute lung injury. Significance of the lower inflection point detected on the lung pressure-volume curve. Am J Respir Crit Care Med. 1999;159(5 pt 1):1612–1623. DOI: https://doi.org/10.1164/ajrccm.159.5.9805112

Gattinoni L, Caironi P, Cressoni M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006;354(17):1775–1786. DOI: https://doi.org/10.1056/NEJMoa052052

Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159(4 pt 1):1241–1248. DOI: https://doi.org/10.1164/ajrccm.159.4.9806077

Putensen C, Zech S, Wrigge H, et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001;164(1):43–49. DOI: https://doi.org/10.1164/ajrccm.164.1.2001078

Roy S, Habashi N, Sadowitz B, et al. Early airway pressure release ventilation prevents ARDS – a novel preventive approach to lung injury. Shock. 2013;39(1):28. DOI: https://doi.org/10.1097/SHK.0b013e31827b47bb

Emr B, Gatto LA, Roy S, et al. Airway pressure release ventilation prevents ventilator-induced lung injury in normal lungs. JAMA Surg. 2013;148(11):1005–1012. DOI: https://doi.org/10.1001/jamasurg.2013.3746

Andrews PL, Shiber JR, Jaruga-Killeen E, et al. Early application of airway pressure release ventilation may reduce mortality in high-risk trauma patients: a systematic review of observational trauma ARDS literature. J Trauma Acute Care Surg. 2013;75(4):635–641. DOI: https://doi.org/10.1097/TA.0b013e31829d3504

Varpula T, Valta P, Niemi R, Takkunen O, Hynynen M, Pettila VV. Airway pressure release ventilation as a primary ventilatory mode in acute respiratory distress syndrome. Acta Anaesthesiol Scand. 2004;48(6):722–731. DOI: https://doi.org/10.1111/j.0001-5172.2004.00411.x

Maxwell RA, Green JM, Waldrop J, et al. A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma. 2010;69(3):501–510; discussion 511. DOI: https://doi.org/10.1097/TA.0b013e3181e75961

Gonzalez M, Arroliga AC, Frutos-Vivar F, et al. Airway pressure release ventilation versus assist-control ventilation: a comparative propensity score and international cohort study. Intensive Care Med. 2010;36(5):817–827. DOI: https://doi.org/10.1007/s00134-010-1837-1

Zhou Y, Jin X, Lv Y, et al. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome. 2017;43(11):1648–1659. DOI: https://doi.org/10.1007/s00134-017-4912-z

Mercat A, Titiriga M, Anguel N, Richard C, Teboul JL. Inverse ratio ventilation (I/E = 2/1) in acute respiratory distress syndrome: a six-hour controlled study. Am J Respir Crit Care Med. 1997;155(5):1637–1642. DOI: https://doi.org/10.1164/ajrccm.155.5.9154869

Lessard MR, Guerot E, Lorino H, Lemaire F, Brochard L. Effects of pressure-controlled with different I:E ratios versus volume-controlled ventilation on respiratory mechanics, gas exchange, and hemodynamics in patients with adult respiratory distress syndrome. Anesthesiology. 1994;80(5):983–991. DOI: https://doi.org/10.1097/00000542-199405000-00006

Mancebo J, Vallverdu I, Bak E, et al. Volume-controlled ventilation and pressure-controlled inverse ratio ventilation: a comparison of their effects in ARDS patients. Monaldi Arch Chest Dis 1994;49(3):201–207.

Huang CC, Shih MJ, Tsai YH, Chang YC, Tsao TC, Hsu KH. Effects of inverse ratio ventilation versus positive end-expiratory pressure on gas exchange and gastric intramucosal PCO(2) and pH under constant mean airway pressure in acute respiratory distress syndrome. Anesthesiology. 2001;95(5):1182–1188. DOI: https://doi.org/10.1097/00000542-200111000-00023

Soroksky A, Esquinas A. Goal-directed mechanical ventilation: are we aiming at the right goals? A proposal for an alternative approach aiming at optimal lung compliance, guided by esophageal pressure in acute respiratory failure. Crit Care Res Pract. 2012. doi:10.1155/2012/597932. DOI: https://doi.org/10.1155/2012/597932

Chiumello D, Cressoni M, Colombo A, et al. The assessment of transpulmonary pressure in mechanically ventilated ARDS patients. Intensive Care Med. 2014;40(11):1670–1678. DOI: https://doi.org/10.1007/s00134-014-3415-4

Chiumello D, Guerin C. Understanding the setting of PEEP from esophageal pressure in patients with ARDS. Intensive Care Med. 2015;41(8):1465–1467. DOI: https://doi.org/10.1007/s00134-015-3776-3

Talmor D, Sarge T, O’Donnell CR, et al. Esophageal and transpulmonary pressures in acute respiratory failure. Crit Care Med. 2006;34(5):1389–1394. DOI: https://doi.org/10.1097/01.CCM.0000215515.49001.A2

Talmor D, Sarge T, Malhotra A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359(20):2095–2104. DOI: https://doi.org/10.1056/NEJMoa0708638

Soroksky A, Kheifets J, Girsh Solomonovich Z, Tayem E, Gingy Ronen B, Rozhavsky B. Managing hypercapnia in patients with severe ARDS and low respiratory system compliance: the role of esophageal pressure monitoring –a case–cohort study. Bio Med Res Int. 2015;2015:385042. DOI: https://doi.org/10.1155/2015/385042

Chiumello D, Cressoni M, Carlesso E, et al. Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med. 2014;42(2):252–264. DOI: https://doi.org/10.1097/CCM.0b013e3182a6384f

Beitler JR, Sarge T, Banner-Goodspeed VM, et al. Effect of titrating positive end-expiratory pressure (PEEP) with an esophageal pressure-guided strategy vs an empirical high PEEP-FiO2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2019;321(9):846–857. DOI: https://doi.org/10.1001/jama.2019.0555

Fish E, Novack V, Banner-Goodspeed VM, Sarge T, Loring S, Talmor D. The esophageal pressure-guided ventilation 2 (EPVent2) trial protocol: a multicentre, randomised clinical trial of mechanical ventilation guided by transpulmonary pressure. BMJ Open. 2014;4(9):e006356. DOI: https://doi.org/10.1136/bmjopen-2014-006356

Guerin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–2168. DOI: https://doi.org/10.1056/NEJMoa1214103

Martindale RG, McClave SA, Vanek VW, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: society of critical care medicine and american society for parenteral and enteral nutrition: executive summary. Crit Care Med. 2009;37(5):1757–1761. DOI: https://doi.org/10.1097/CCM.0b013e3181a40116

Rice TW, Wheeler AP, Thompson BT, et al. Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA. 2012;307(8):795–803. DOI: https://doi.org/10.1001/jama.2012.137

Needham DM, Dinglas VD, Bienvenu OJ, et al. One year outcomes in patients with acute lung injury randomised to initial trophic or full enteral feeding: prospective follow-up of EDEN randomised trial. BMJ. 2013;346:f1532. DOI: https://doi.org/10.1136/bmj.f1532

Needham DM, Dinglas VD, Morris PE, et al. Physical and cognitive performance of patients with acute lung injury 1 year after initial trophic versus full enteral feeding. EDEN trial follow-up. Am J Respir Crit Care Med. 2013;188(5):567–576. DOI: https://doi.org/10.1164/rccm.201304-0651OC

Lekka ME, Liokatis S, Nathanail C, Galani V, Nakos G. The impact of intravenous fat emulsion administration in acute lung injury. Am J Respir Crit Care Med. 2004;169(5):638–644. DOI: https://doi.org/10.1164/rccm.200305-620OC

Suchner U, Katz DP, Furst P, et al. Effects of intravenous fat emulsions on lung function in patients with acute respiratory distress syndrome or sepsis. Crit Care Med. 2001;29(8):1569–1574. DOI: https://doi.org/10.1097/00003246-200108000-00012

Harvey SE, Parrott F, Harrison DA, et al. Trial of the route of early nutritional support in critically ill adults. N Engl J Med. 2014;371(18):1673–1684. DOI: https://doi.org/10.1056/NEJMoa1409860

Singer P, Theilla M, Fisher H, Gibstein L, Grozovski E, Cohen J. Benefit of an enteral diet enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with acute lung injury. Crit Care Med. 2006;34(4):1033–1038. DOI: https://doi.org/10.1097/01.CCM.0000206111.23629.0A

Gadek JE, DeMichele SJ, Karlstad MD, et al. Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Enteral Nutrition in ARDS Study Group. Crit Care Med. 1999;27(8):1409–1420. DOI: https://doi.org/10.1097/00003246-199908000-00001

Rice TW, Wheeler AP, Thompson BT, et al. Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA. 2011;306(14):1574–1581. DOI: https://doi.org/10.1001/jama.2011.1435

Stapleton RD, Martin TR, Weiss NS, et al. A phase II randomized placebo-controlled trial of omega-3 fatty acids for the treatment of acute lung injury. Crit Care Med. 2011;39(7):1655–1662. DOI: https://doi.org/10.1097/CCM.0b013e318218669d

Devlin JW, Skrobik Y, Gélinas C, et al. Clinical Practice Guidelines for the Prevention and Management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46(9):e825–e873.

Published

15-01-2020

How to Cite

Al-Jasser, S. A., E Alharbi, S. S., Albishri, A. A., Ghassap, S. A., Rashad, A. I., Alanizi, A. S., AL Khathami, M. M. M., Alareefi, H. S., Brahim Alshammari, H. M., Abdullah Alkhathami, B. M., Dobayan Alenazi, N. S., Mohammed Alhazmi, F. K., Isa Gaddourah, A. M., & Alrakhimy, H. D. (2020). EMS and paramedic management of respiratory distress: Prehospital use of CPAP and BiPAP. International Journal of Health Sciences, 4(S1), 269–291. https://doi.org/10.53730/ijhs.v4nS1.15219

Issue

Section

Peer Review Articles

Most read articles by the same author(s)

<< < 1 2