Interventions utilizing smartwatches in healthcare: A comprehensive literature review
Keywords:
smartwatches, wearable technology, health management, clinical research, systematic reviewAbstract
Background: The rise of wearable technology has significantly transformed health management, with smartwatches becoming essential tools for enhancing health and wellness. Their capabilities include monitoring various health metrics and facilitating proactive health management. However, systematic reviews examining the impact of smartwatches on health outcomes remain limited. Aim: This review aims to synthesize the existing evidence on smartwatch interventions in clinical research and assess their effectiveness in improving health-related outcomes. Methods: A systematic literature search was conducted in Scopus and PubMed for studies published up to April 2023. Inclusion criteria focused on clinical studies utilizing smartwatches, reporting quantitative health outcomes. Data extraction involved details on target diseases, smartwatch models, study designs, and health outcomes, while quality assessment was performed using the Effective Public Health Practice Project (EPHPP) tool. Results: The search yielded 1,099 records from Scopus and 353 from PubMed, leading to 13 studies that met inclusion criteria. Interventions primarily targeted cardiovascular conditions, diabetes, mental health, and other health issues. Most studies demonstrated moderate methodological quality, with two rated strong. The majority of interventions provided notifications and reminders to enhance patient engagement and adherence. Conclusion: Smartwatches show promise in clinical settings, improving health outcomes across various conditions.
Downloads
References
Lima, F. V., Kadiyala, V., Huang, A., Agusala, K., Cho, D., Freeman, A. M., Druz, R. (2022). At the crossroads! Time to start taking smartwatches seriously. American Journal of Cardiology, 179, 96-101. https://doi.org/10.1016/j.amjcard.2022.06.020 DOI: https://doi.org/10.1016/j.amjcard.2022.06.020
Lee, S. M., & Lee, D. (2020). Healthcare wearable devices: An analysis of key factors for continuous use intention. Service Business, 14, 503-531. https://doi.org/10.1007/s11628-020-00428-3 DOI: https://doi.org/10.1007/s11628-020-00428-3
Reeder, B., & David, A. (2016). Health at hand: A systematic review of smartwatch uses for health and wellness. Journal of Biomedical Informatics, 63, 269-276. https://doi.org/10.1016/j.jbi.2016.09.001 DOI: https://doi.org/10.1016/j.jbi.2016.09.001
King, C. E., & Sarrafzadeh, M. (2018). A survey of smartwatches in remote health monitoring. Journal of Healthcare Informatics Research, 2, 1-24. https://doi.org/10.1007/s41666-017-0012-7 DOI: https://doi.org/10.1007/s41666-017-0012-7
Park, K., Jeong, M., & Kim, K. (2020). Usability evaluation of menu interfaces for smartwatches.
Journal of Computer Information Systems, 60, 156-165. https://doi.org/10.1080/08874417.2018.1425644 DOI: https://doi.org/10.1080/08874417.2018.1425644
Dai, R., Lu, C., Yun, L., Lenze, E., Avidan, M., & Kannampallil, T. (2021). Comparing stress prediction models using smartwatch physiological signals and participant self-reports. Computers in Methods and Programs in Biomedicine, 208, Article 106207. https://doi.org/10.1016/j.cmpb.2021.106207 DOI: https://doi.org/10.1016/j.cmpb.2021.106207
Boillat, T., Siebert, J. N., Alduaij, N., & Ehrler, F. (2020). GOFlow: Smartwatch app to deliver laboratory results in emergency departments – A feasibility study. International Journal of Medical Informatics, 134. https://doi.org/10.1016/j.ijmedinf.2019.104034 DOI: https://doi.org/10.1016/j.ijmedinf.2019.104034
Henriksen, A., Mikalsen, M. H., Woldaregay, A. Z., Muzny, M., Hartvigsen, G., Hopstock, L. A., & Grimsgaard, S. (2018). Using fitness trackers and smartwatches to measure physical activity in research: Analysis of consumer wrist-worn wearables. Journal of Medical Internet Research, 20, e9157. https://doi.org/10.2196/jmir.9157 DOI: https://doi.org/10.2196/jmir.9157
Chung, J., Brakey, H. R., Reeder, B., Myers, O., & Demiris, G. (2023). Community-dwelling older adults’ acceptance of smartwatches for health and location tracking. International Journal of Older People Nursing, 18, e12490. https://doi.org/10.1111/opn.12490 DOI: https://doi.org/10.1111/opn.12490
Bumgarner, J. M., Lambert, C. T., Hussein, A. A., Cantillon, D. J., Baranowski, B., Wolski, K., Lindsay, B. D., Wazni, O. M., Tarakji, K. G. (2018). Smartwatch algorithm for automated detection of atrial fibrillation. Journal of the American College of Cardiology, 71, 2381-2388. https://doi.org/10.1016/j.jacc.2018.03.003 DOI: https://doi.org/10.1016/j.jacc.2018.03.003
Dutot, V., Bhatiasevi, V., & Bellallahom, N. (2019). Applying the technology acceptance model in a three-countries study of smartwatch adoption. Journal of High Technology Management Research, 30,
-14. https://doi.org/10.1016/j.hitech.2019.02.001 DOI: https://doi.org/10.1016/j.hitech.2019.02.001
Choi, H.-Y., Keil, M., & Baird, A. M. (2022). Intention to use smartwatch health applications: A regulatory fit and locus of control perspective. Information & Management, 59. https://doi.org/10.1016/j.im.2022.103687 DOI: https://doi.org/10.1016/j.im.2022.103687
Ding, E. Y., Castañeda Avila, M., Tran, K.-V., Mehawej, J., Filippaios, A., Paul, T., Otabil, E. M., Noorishirazi, K., Han, D., Saczynski, J. S., Barton, B., Mazor, K. M., Chon, K., & McManus, D. D.
(2022). Usability of a smartwatch for atrial fibrillation detection in older adults after stroke. Cardiovascular Digital Health Journal, 3, 126-135. https://doi.org/10.1016/j.cvdhj.2022.03.003 DOI: https://doi.org/10.1016/j.cvdhj.2022.03.003
Kamal Basha, N., Aw, E.-C.-X., & Chuah, S.-H.-W. (2022). Are we so over smartwatches? Or can technology, fashion, and psychographic attributes sustain smartwatch usage? Technology in Society, 69, Article 101952. https://doi.org/10.1016/j.techsoc.2022.101952 DOI: https://doi.org/10.1016/j.techsoc.2022.101952
Lu, T.-C., Fu, C.-M., Ma, M.-H.-M., Fang, C.-C., & Turner, A. M. (2016). Healthcare applications of smart watches: A systematic review. Applied Clinical Informatics, 7, 850-869. https://doi.org/10.4338/ACI-2016-03-R-0042 DOI: https://doi.org/10.4338/ACI-2016-03-R-0042
Jo, A., Coronel, B. D., Coakes, C. E., & Mainous, A. G. (2019). Is there a benefit to patients using wearable devices such as Fitbit or health apps on mobiles? A systematic review. American Journal of Medicine, 132, 1394-1400.e1. https://doi.org/10.1016/j.amjmed.2019.06.018 DOI: https://doi.org/10.1016/j.amjmed.2019.06.018
Nahavandi, D., Alizadehsani, R., Khosravi, A., & Acharya, U. R. (2022). Application of artificial intelligence in wearable devices: Opportunities and challenges. Computers Methods Programs Biomedicine, 213, Article 106541. https://doi.org/10.1016/j.cmpb.2021.106541 DOI: https://doi.org/10.1016/j.cmpb.2021.106541
Bayoumy, K., Gaber, M., Elshafeey, A., Mhaimeed, O., Dineen, E. H., Marvel, F. A., Martin, S. S., Muse, E. D., Turakhia, M. P., Tarakji, K. G., & Elshazly, M. B. (2021). Smart wearable devices in cardiovascular care: Where we are and how to move forward. Nature Reviews Cardiology, 18, 581599. https://doi.org/10.1038/s41569-021-00522-7 DOI: https://doi.org/10.1038/s41569-021-00522-7
Rodriguez-León, C., Villalonga, C., Munoz-Torres, M., Ruiz, J. R., & Banos, O. (2021). Mobile and wearable technology for the monitoring of diabetes-related parameters: Systematic review. JMIR mHealth and uHealth, 9, e25138. https://doi.org/10.2196/25138 DOI: https://doi.org/10.2196/25138
Sequeira, L., Perrotta, S., LaGrassa, J., Merikangas, K., Kreindler, D., Kundur, D., Courtney, D., Szatmari, P., Battaglia, M., & Strauss, J. (2020). Mobile and wearable technology for monitoring depressive symptoms in children and adolescents: A scoping review. Journal of Affective Disorders, 265, 314-324. https://doi.org/10.1016/j.jad.2019.11.156 DOI: https://doi.org/10.1016/j.jad.2019.11.156
Brickwood, K.-J., Watson, G., O’Brien, J., & Williams, A. D. (2019). Consumer-based wearable activity trackers increase physical activity participation: Systematic review and meta-analysis. JMIR mHealth and uHealth, 7, e11819. https://doi.org/10.2196/11819 DOI: https://doi.org/10.2196/11819
Laranjo, L., Ding, D., Heleno, B., Kocaballi, B., Quiroz, J. C., Tong, H. L., Chahwan, B., Neves, A. L., Gabarron, E., Dao, K. P., Rodrigues, D., Neves, G. C., Antunes, M. L., Coiera, E., & Bates, D. W.
(2021). Do smartphone applications and activity trackers increase physical activity in adults? Systematic review, meta-analysis, and metaregression. British Journal of Sports Medicine, 55, 422-432. https://doi.org/10.1136/bjsports-2020-102892 DOI: https://doi.org/10.1136/bjsports-2020-102892
Mohammadi, E., Thelwall, M., Haustein, S., & Larivière, V. (2015). Who reads research articles? An altmetrics analysis of Mendeley user categories. Journal of the Association for Information Science and Technology, 66(9), 1832-1846. https://doi.org/10.1002/asi.23286 DOI: https://doi.org/10.1002/asi.23286
Armijo-Olivo, S., Stiles, C. R., Hagen, N. A., Biondo, P. D., & Cummings, G. G. (2012). Assessment of study quality for systematic reviews: A comparison of the Cochrane Collaboration Risk of Bias Tool and the Effective Public Health Practice Project Quality Assessment Tool: Methodological research. DOI: https://doi.org/10.1111/j.1365-2753.2010.01516.x
Journal of Evaluation in Clinical Practice, 18(1), 12-18. https://doi.org/10.1111/j.13652753.2010.01516.x
Panic, N., Leoncini, E., de Belvis, G., Ricciardi, W., & Boccia, S. (2013). Evaluation of the Endorsement of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Statement on the Quality of Published Systematic Reviews and Meta-Analyses. PLOS ONE, 8(12), e83138. https://doi.org/10.1371/journal.pone.0083138 DOI: https://doi.org/10.1371/journal.pone.0083138
Abbott, C. A., Chatwin, K. E., Foden, P., Hasan, A. N., Sange, C., Rajbhandari, S. M., Reddy, P. N., Vileikyte, L., Bowling, F. L., Boulton, A. J. M., & Reeves, N. D. (2019). Innovative intelligent insole system reduces diabetic foot ulcer recurrence at plantar sites: A prospective, randomised, proof-ofconcept study. The Lancet Digital Health, 1(6), e308-e318. https://doi.org/10.1016/S25897500(19)30128-1 DOI: https://doi.org/10.1016/S2589-7500(19)30128-1
Aguilar-Latorre, A., Pérez Algorta, G., Navarro-Guzmán, C., Serrano-Ripoll, M. J., & OlivánBlázquez, B. (2022). Effectiveness of a lifestyle modification programme in the treatment of depression symptoms in primary care. Frontiers in Medicine, 9, Article 954644. https://doi.org/10.3389/fmed.2022.954644 DOI: https://doi.org/10.3389/fmed.2022.954644
Alexander, J. S., Redfern, R. E., Duwelius, P. J., Berend, K. R., Lombardi, A. V. J., & Crawford, D. A. (2023). Use of a smartphone-based care platform after primary partial and total knee arthroplasty: 1year follow-up of a prospective randomized controlled trial. Journal of Arthroplasty. https://doi.org/10.1016/j.arth.2023.02.082 DOI: https://doi.org/10.1016/j.arth.2023.02.082
Broers, E. R., Widdershoven, J., Denollet, J., Lodder, P., Kop, W. J., Wetzels, M., Ayoola, I., PieraJimenez, J., & Habibović, M. (2020). Personalized eHealth program for lifestyle change: Results from the “do Cardiac Health Advanced New Generated Ecosystem (Do CHANGE 2)” randomized controlled trial. Psychosomatic Medicine, 82(5), 409-419. https://doi.org/10.1097/PSY.0000000000000802 DOI: https://doi.org/10.1097/PSY.0000000000000802
Chae, S. H., Kim, Y., Lee, K.-S., & Park, H.-S. (2020). Development and clinical evaluation of a webbased upper limb home rehabilitation system using a smartwatch and machine learning model for chronic stroke survivors: Prospective comparative study. JMIR mHealth and uHealth, 8(9), e17216. https://doi.org/10.2196/17216 DOI: https://doi.org/10.2196/17216
Li, L., Wang, Z., Cui, L., Xu, Y., Lee, H., & Guan, K. (2023). The efficacy of a novel smart watch on medicine adherence and symptom control of allergic rhinitis patients: Pilot study. World Allergy Organization Journal, 16(1). https://doi.org/10.1016/j.waojou.2022.100739 DOI: https://doi.org/10.1016/j.waojou.2022.100739
Low, C. A., Danko, M., Durica, K. C., Kunta, A. R., Mulukutla, R., Ren, Y., Bartlett, D. L., Bovbjerg, D. H., Dey, A. K., & Jakicic, J. M. (2020). A real-time mobile intervention to reduce sedentary behavior before and after cancer surgery: Usability and feasibility study. JMIR Perioperative Medicine, 3(1), e17292. https://doi.org/10.2196/17292 DOI: https://doi.org/10.2196/17292
Marvel, F. A., Spaulding, E. M., Lee, M. A., Yang, W. E., Demo, R., Ding, J., Wang, J., Xun, H., Shah, L. M., Weng, D., Carter, J., Majmudar, M., Elgin, E., Sheidy, J., McLin, R., Flowers, J., Vilarino, V., Lumelsky, D. N., Bhardwaj, V., Padula, W. V., Shan, R., Huynh, P. P., Wongvibulsin, S., Leung, C., Allen, J. K., & Martin, S. S. (2021). Digital health intervention in acute myocardial infarction. Circulation: Cardiovascular Quality and Outcomes, 14(5), e007741. https://doi.org/10.1161/CIRCOUTCOMES.120.007741 DOI: https://doi.org/10.1161/CIRCOUTCOMES.121.007741
Perez, M. V., Mahaffey, K. W., Hedlin, H., Rumsfeld, J. S., Garcia, A., Ferris, T., Balasubramanian, V., Russo, A. M., Rajmane, A., Cheung, L., Hung, G., Lee, J., Kowey, P., Talati, N., Nag, D., Gummidipundi, S. E., Beatty, A., Hills, M. T., Desai, S., Granger, C. B., Desai, M., & Turakhia, M. P. (2019). Large-scale assessment of a smartwatch to identify atrial fibrillation. New England Journal of Medicine, 381(20), 1909-1917. https://doi.org/10.1056/NEJMoa1901183 DOI: https://doi.org/10.1056/NEJMoa1901183
Pope, Z. C., Zeng, N., Zhang, R., Lee, H. Y., & Gao, Z. (2018). Effectiveness of combined smartwatch and social media intervention on breast cancer survivor health outcomes: A 10-week pilot randomized trial. Journal of Clinical Medicine, 7(6), 140. https://doi.org/10.3390/jcm7060140 DOI: https://doi.org/10.3390/jcm7060140
Timurtas, E., Inceer, M., Mayo, N., Karabacak, N., Sertbas, Y., & Polat, M. G. (2022). Technologybased and supervised exercise interventions for individuals with type 2 diabetes: Randomized controlled trial. Primary Care Diabetes, 16(1), 49-56. https://doi.org/10.1016/j.pcd.2021.12.005 DOI: https://doi.org/10.1016/j.pcd.2021.12.005
Trinquart, L., Liu, C., McManus, D. D., Nowak, C., Lin, H., Spartano, N. L., Borrelli, B., Benjamin, E. J., & Murabito, J. M. (2023). Increasing engagement in the electronic Framingham Heart Study: Factorial randomized controlled trial. Journal of Medical Internet Research, 25(5), e40784. https://doi.org/10.2196/40784 DOI: https://doi.org/10.2196/40784
Published
How to Cite
Issue
Section
Copyright (c) 2024 International journal of health sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.