Exploring how lifestyle choices influence the management of chronic diseases-role of healthcare providers

Review article

https://doi.org/10.53730/ijhs.v5nS1.15088

Authors

  • Fahdah Mehsan Alotaibi KSA, National Guard Health Affairs
  • Abdulrhman Ali Almazam ‏KSA, National Guard Health Affairs
  • ‏Motaeb Alotaibi ‏KSA, National Guard Health Affairs
  • ‏Arwa Mohammad Emam ‏KSA, National Guard Health Affairs
  • ‏Naif Saad Alqahtani KSA, National Guard Health Affairs
  • ‏Ashwaq Ibrahim Alheggi KSA, National Guard Health Affairs
  • ‏Ashwaq Fahad Alanazi KSA, National Guard Health Affairs
  • ‏Khlood Khaldan Alharbi KSA, National Guard Health Affairs
  • ‏Arwa Abdullah Alhamed KSA, National Guard Health Affairs
  • ‏Eman Ibrahim Alshaikh Ali KSA, National Guard Health Affairs
  • Maram Jaafar Alnemer KSA, National Guard Health Affairs
  • ‏Mahfoudh Saad Alghamdi KSA, National Guard Health Affairs
  • ‏Norah Mubarak Alomayrah KSA, National Guard Health Affairs
  • ‏Abdulaziz Shaem Alsharari ‏KSA, National Guard Health Affairs
  • ‏Sami Farhan Alsharari KSA, National Guard Health Affairs
  • ‏Moteb Roshaid Alshamari KSA, National Guard Health Affairs
  • ‏Nahid Ahmad Lamfon ‏KSA, National Guard Health Affairs
  • Asma Saad Al-Qahtani KSA, National Guard Health Affairs

Keywords:

Oxidative Stress, Chronic Diseases, Lifestyle Choices, Antioxidants, Healthcare Providers, Cardiovascular Diseases, Cancer, Neurodegenerative Disorders

Abstract

Background: Chronic diseases are increasingly prevalent worldwide, with lifestyle choices playing a significant role in their management. Free radicals and oxidative stress have been implicated in various chronic conditions, including cardiovascular diseases, cancer, and neurodegenerative disorders. These conditions arise from an imbalance between reactive oxygen species (ROS) production and the body's antioxidant defenses. Aim: This review aims to explore how lifestyle choices influence oxidative stress and chronic disease management, with a focus on the role of healthcare providers in guiding lifestyle modifications to mitigate oxidative stress and improve health outcomes. Methods: A comprehensive review of the literature was conducted, focusing on the mechanisms of oxidative stress and its impact on chronic diseases. Studies on the effects of lifestyle factors such as diet, exercise, smoking, and alcohol consumption on oxidative stress were analyzed. The role of antioxidants in counteracting oxidative damage and their implications for chronic disease management were also examined. Results: The review highlights that lifestyle factors significantly affect oxidative stress levels. Moderate exercise enhances antioxidant defenses, while excessive physical activity, smoking, and alcohol consumption exacerbate oxidative stress. A diet rich in antioxidants helps mitigate oxidative damage. 

Downloads

Download data is not yet available.

References

Abramov, A. Y., Jacobson, J., Wientjes, F., Hothersall, J., Canevari, L., and Duchen, M. R. (2005). Expression and modulation of an NADPH oxidase in mammalian astrocytes. J. Neurosci. 25, 9176–9184. doi: 10.1523/jneurosci.1632-05.2005 DOI: https://doi.org/10.1523/JNEUROSCI.1632-05.2005

Alfonso-Prieto, M., Biarnes, X., Vidossich, P., and Rovira, C. (2009). The molecular mechanism of the catalase reaction. J. Am. Chem. Soc. 131, 11751–11761. doi: 10.1021/ja9018572 DOI: https://doi.org/10.1021/ja9018572

Aminjan, H. H., Abtahi, S. R., Hazrati, E., Chamanara, M., Jalili, M., and Paknejad, B. (2019). Targeting of oxidative stress and inflammation through ROS/NF-kappaB pathway in phosphine-induced hepatotoxicity mitigation. Life Sci. 232:116607. doi: 10.1016/j.lfs.2019.116607 DOI: https://doi.org/10.1016/j.lfs.2019.116607

Andreyev, A. Y., Kushnareva, Y. E., and Starkov, A. A. (2005). Mitochondrial metabolism of reactive oxygen species. Biochemistry 70, 200–214 DOI: https://doi.org/10.1007/s10541-005-0102-7

Antonioni, A., Fantini, C., Dimauro, I., and Caporossi, D. (2019). Redox homeostasis in sport: do athletes really need antioxidant support? Res. Sports Med. 27, 147–165. doi: 10.1080/15438627.2018.1563899 DOI: https://doi.org/10.1080/15438627.2018.1563899

Antunes dos Santos, A., Ferrer, B., Marques Gonçalves, F., Tsatsakis, A. M., Renieri, E. A., Skalny, A. V., et al. (2018). Oxidative stress in methylmercury-induced cell toxicity. Toxics 6:47. doi: 10.3390/toxics6030047 DOI: https://doi.org/10.3390/toxics6030047

Aroor, A. R., Mandavia, C., Ren, J., Sowers, J. R., and Pulakat, L. (2012). Mitochondria and oxidative stress in the cardiorenal metabolic syndrome. Cardiorenal Med. 2, 87–109. doi: 10.1159/000335675 DOI: https://doi.org/10.1159/000335675

Ayala, A., Munoz, M. F., and Arguelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014:360438. DOI: https://doi.org/10.1155/2014/360438

Banafsheh, A. A., and Sirous, G. (2016). Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life Sci. 146, 163–173. doi: 10.1016/j.lfs.2016.01.014 DOI: https://doi.org/10.1016/j.lfs.2016.01.014

Barbieri, R., Coppo, E., Marchese, A., Daglia, M., Sobarzo-Sanchez, E., Nabavi, S. F., et al. (2017). Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 196, 44–68. doi: 10.1016/j.micres.2016.12.003 DOI: https://doi.org/10.1016/j.micres.2016.12.003

Barrera, G. (2012). Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol. 2012, 137289–137289. DOI: https://doi.org/10.5402/2012/137289

Bartosz, G. (2009). Reactive oxygen species: destroyers or messengers? Biochem. Pharmacol. 77, 1303–1315. doi: 10.1016/j.bcp.2008.11.009 DOI: https://doi.org/10.1016/j.bcp.2008.11.009

Battelli, M. G., Bolognesi, A., and Polito, L. (2014a). Pathophysiology of circulating xanthine oxidoreductase: new emerging roles for a multi-tasking enzyme. Biochim. Biophys. Acta 1842, 1502–1517. doi: 10.1016/j.bbadis.2014.05.022 DOI: https://doi.org/10.1016/j.bbadis.2014.05.022

Battelli, M. G., Polito, L., and Bolognesi, A. (2014b). Xanthine oxidoreductase in atherosclerosis pathogenesis: not only oxidative stress. Atherosclerosis 237, 562–567. doi: 10.1016/j.atherosclerosis.2014.10.006 DOI: https://doi.org/10.1016/j.atherosclerosis.2014.10.006

Battin, E. E., and Brumaghim, J. L. (2009). Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem. Biophys. 55, 1–23. doi: 10.1007/s12013-009-9054-7 DOI: https://doi.org/10.1007/s12013-009-9054-7

Bedard, K., and Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev 87, 245–313. doi: 10.1152/physrev.00044.2005 DOI: https://doi.org/10.1152/physrev.00044.2005

Benfeitas, R., Uhlen, M., Nielsen, J., and Mardinoglu, A. (2017). New challenges to study heterogeneity in cancer redox metabolism. Front. Cell Dev. Biol. 5:65. doi: 10.3389/fcell.2017.00065 DOI: https://doi.org/10.3389/fcell.2017.00065

Beyer, C. E., Steketee, J. D., and Saphier, D. (1998). Antioxidant properties of melatonin–an emerging mystery. Biochem. Pharmacol. 56, 1265–1272. doi: 10.1016/s0006-2952(98)00180-4 DOI: https://doi.org/10.1016/S0006-2952(98)00180-4

Bhattacharyya, A., Chattopadhyay, R., Mitra, S., and Crowe, S. E. (2014). Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 94, 329–354. doi: 10.1152/physrev.00040.2012 DOI: https://doi.org/10.1152/physrev.00040.2012

Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., and Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organ. J. 5, 9–19. DOI: https://doi.org/10.1097/WOX.0b013e3182439613

Blokhuis, A. M., Groen, E. J., Koppers, M., Van Den Berg, L. H., and Pasterkamp, R. J. (2013). Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol. 125, 777–794. DOI: https://doi.org/10.1007/s00401-013-1125-6

Borek, C. (2001). Antioxidant health effects of aged garlic extract. J. Nutr. 131, 1010s–1015s. doi: 10.1093/jn/131.3.1010s DOI: https://doi.org/10.1093/jn/131.3.1010S

Buga, A.-M., Docea, A. O., Albu, C., Malin, R. D., Branisteanu, D. E., Ianosi, G., et al. (2019). Molecular and cellular stratagem of brain metastases associated with melanoma. Oncol. Lett. 17, 4170–4175. DOI: https://doi.org/10.3892/ol.2019.9933

Buj, R., and Aird, K. M. (2018). Deoxyribonucleotide triphosphate metabolism in cancer and metabolic disease. Front. Endocrinol. 9:177. doi: 10.3389/fendo.2018.00177 DOI: https://doi.org/10.3389/fendo.2018.00177

Cadet, J., Davies, K. J. A., Medeiros, M. H. G., Di Mascio, P., and Wagner, J. R. (2017). Formation and repair of oxidatively generated damage in cellular DNA. Free Radic. Biol. Med. 107, 13–34. doi: 10.1016/j.freeradbiomed.2016.12.049 DOI: https://doi.org/10.1016/j.freeradbiomed.2016.12.049

Cadet, J., Ravanat, J. L., Tavernaporro, M., Menoni, H., and Angelov, D. (2012). Oxidatively generated complex DNA damage: tandem and clustered lesions. Cancer Lett. 327, 5–15. doi: 10.1016/j.canlet.2012.04.005 DOI: https://doi.org/10.1016/j.canlet.2012.04.005

Cadet, J., and Wagner, J. R. (2013). DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb. Perspect. Biol. 5:a012559. doi: 10.1101/cshperspect.a012559 DOI: https://doi.org/10.1101/cshperspect.a012559

Cardoso, B. R., Hare, D. J., Bush, A. I., and Roberts, B. R. (2017). Glutathione peroxidase 4: A new player in neurodegeneration? Mol. Psychiatry 22, 328–335. doi: 10.1038/mp.2016.196 DOI: https://doi.org/10.1038/mp.2016.196

Chen, J.-Y., Ye, Z.-X., Wang, X.-F., Chang, J., Yang, M.-W., Zhong, H.-H., et al. (2018). Nitric oxide bioavailability dysfunction involves in atherosclerosis. Biomed. Pharmacother. 97, 423–428. doi: 10.1016/j.biopha.2017.10.122 DOI: https://doi.org/10.1016/j.biopha.2017.10.122

Chen, X.-F., Wang, L., Wu, Y.-Z., Song, S.-Y., Min, H.-Y., Yang, Y., et al. (2018). Effect of puerarin in promoting fatty acid oxidation by increasing mitochondrial oxidative capacity and biogenesis in skeletal muscle in diabetic rats. Nutr. Diabetes 8, 1–13. DOI: https://doi.org/10.1038/s41387-017-0009-6

Chen, X., Guo, C., and Kong, J. (2012). Oxidative stress in neurodegenerative diseases. Neural. Regen. Res. 7, 376–385.

Chondrogianni, N., Sakellari, M., Lefaki, M., Papaevgeniou, N., and Gonos, E. S. (2014). Proteasome activation delays aging in vitro and in vivo. Free Radic. Biol. Med. 71, 303–320. doi: 10.1016/j.freeradbiomed.2014.03.031 DOI: https://doi.org/10.1016/j.freeradbiomed.2014.03.031

Cillard, J., and Cillard, P. (1980). [Prooxidant effect of alpha-tocopherol on essential fatty acids in aqueous media]. Ann. Nutr. Aliment. 34, 579–591.

Clark, I. A., Cowden, W. B., and Hunt, N. H. (1985). Free radical-induced pathology. Med. Res. Revi. 5, 297–332. DOI: https://doi.org/10.1002/med.2610050303

Cobley, J. N., Fiorello, M. L., and Bailey, D. M. (2018). 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 15, 490–503. doi: 10.1016/j.redox.2018.01.008 DOI: https://doi.org/10.1016/j.redox.2018.01.008

Conti, V., Izzo, V., Corbi, G., Russomanno, G., Manzo, V., De Lise, F., et al. (2016). Antioxidant supplementation in the treatment of aging-associated diseases. Front. Pharmacol. 7:24. doi: 10.3389/fphar.2016.00024 DOI: https://doi.org/10.3389/fphar.2016.00024

Cortat, B., Garcia, C. C. M., Quinet, A., Schuch, A. P., De Lima-Bessa, K. M., and Menck, C. F. M. (2013). The relative roles of DNA damage induced by UVA irradiation in human cells. Photochem. Photobiol. Sci. 12, 1483–1495. DOI: https://doi.org/10.1039/c3pp50023c

Curi, R., Newsholme, P., Marzuca-Nassr, G. N., Takahashi, H. K., Hirabara, S. M., Cruzat, V., et al. (2016). Regulatory principles in metabolism-then and now. Biochem. J. 473, 1845–1857. doi: 10.1042/bcj20160103 DOI: https://doi.org/10.1042/BCJ20160103

Da Pozzo, E., De Leo, M., Faraone, I., Milella, L., Cavallini, C., Piragine, E., et al. (2018). Antioxidant and antisenescence effects of bergamot juice. Oxid. Med. Cell. Longev. 2018:9395804. DOI: https://doi.org/10.1155/2018/9395804

Danielson, S. R., and Andersen, J. K. (2008). Oxidative and nitrative protein modifications in Parkinson’s disease. Free Radic. Biol. Med. 44, 1787–1794. doi: 10.1016/j.freeradbiomed.2008.03.005 DOI: https://doi.org/10.1016/j.freeradbiomed.2008.03.005

Davalli, P., Mitic, T., Caporali, A., Lauriola, A., and D’arca, D. (2016). ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid. Med. Cell. Longev. 2016:3565127. DOI: https://doi.org/10.1155/2016/3565127

De Bont, R., and van Larebeke, N. (2004). Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19, 169–185. doi: 10.1093/mutage/geh025 DOI: https://doi.org/10.1093/mutage/geh025

Delcambre, S., Nonnenmacher, Y., and Hiller, K. (2016). “Dopamine metabolism and reactive oxygen species production,” in Mitochondrial Mechanisms of Degeneration and Repair in Parkinson’s Disease, ed. L. Buhlman (Cham: Springer). DOI: https://doi.org/10.1007/978-3-319-42139-1_2

Di Meo, S., Reed, T. T., Venditti, P., and Victor, V. M. (2016). Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev. 2016:1245049. DOI: https://doi.org/10.1155/2016/1245049

Docea, A. O., Gofita, E., Goumenou, M., Calina, D., Rogoveanu, O., Varut, M., et al. (2018). Six months exposure to a real life mixture of 13 chemicals’ below individual NOAELs induced non monotonic sex-dependent biochemical and redox status changes in rats. Food Chem. Toxicol. 115, 470–481. doi: 10.1016/j.fct.2018.03.052 DOI: https://doi.org/10.1016/j.fct.2018.03.052

Docea, A. O., Mitruţ, P., Grigore, D., Pirici, D., Cãlina, D. C., and Gofiţã, E. (2012). Immunohistochemical expression of TGF beta (TGF-β), TGF beta receptor 1 (TGFBR1), and Ki67 in intestinal variant of gastric adenocarcinomas. Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 53, 683–692.

Duarte, T. L., and Lunec, J. (2005). Review: when is an antioxidant not an antioxidant? A review of novel actions and reactions of vitamin C. Free Radic. Res. 39, 671–686. doi: 10.1080/10715760500104025 DOI: https://doi.org/10.1080/10715760500104025

Egea, J., Fabregat, I., Frapart, Y. M., Ghezzi, P., Gorlach, A., Kietzmann, T., et al. (2017). European contribution to the study of ROS: a summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol. 13, 94–162. DOI: https://doi.org/10.1016/j.redox.2017.05.007

Elahi, M. M., Kong, Y. X., and Matata, B. M. (2009). Oxidative stress as a mediator of cardiovascular disease. Oxid. Med. Cell. Longev. 2, 259–269. doi: 10.4161/oxim.2.5.9441 DOI: https://doi.org/10.4161/oxim.2.5.9441

Ertani, A., Pizzeghello, D., Francioso, O., Tinti, A., and Nardi, S. (2016). Biological activity of vegetal extracts containing phenols on plant metabolism. Molecules 21:205. doi: 10.3390/molecules21020205 DOI: https://doi.org/10.3390/molecules21020205

Esper, R. J., Nordaby, R. A., Vilarino, J. O., Paragano, A., Cacharron, J. L., and Machado, R. A. (2006). Endothelial dysfunction: a comprehensive appraisal. Cardiovasc. Diabetol. 5:4. DOI: https://doi.org/10.1186/1475-2840-5-4

Fan, J., Ye, J., Kamphorst, J. J., Shlomi, T., Thompson, C. B., and Rabinowitz, J. D. (2014). Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298–302. doi: 10.1038/nature13236 DOI: https://doi.org/10.1038/nature13236

Fenga, C., Gangemi, S., Teodoro, M., Rapisarda, V., Golokhvast, K., Docea, A. O., et al. (2017). 8-Hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to low-dose benzene. Toxicol. Rep. 4, 291–295. doi: 10.1016/j.toxrep.2017.05.008 DOI: https://doi.org/10.1016/j.toxrep.2017.05.008

Fernández-García, E., Carvajal-Lérida, I., Jarén-Galán, M., Garrido-Fernández, J., Pérez-Gálvez, A., and Hornero-Méndez, D. (2012). Carotenoids bioavailability from foods: from plant pigments to efficient biological activities. Food Res. Int. 46, 438–450. doi: 10.1016/j.foodres.2011.06.007 DOI: https://doi.org/10.1016/j.foodres.2011.06.007

Finkel, T. (2003). Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 15, 247–254. doi: 10.1016/s0955-0674(03)00002-4 DOI: https://doi.org/10.1016/S0955-0674(03)00002-4

Finkel, T. (2011). Signal transduction by reactive oxygen species. J. Cell Biol. 194, 7–15. DOI: https://doi.org/10.1083/jcb.201102095

Finkel, T., and Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247. doi: 10.1038/35041687 DOI: https://doi.org/10.1038/35041687

Firuzi, O., Miri, R., Tavakkoli, M., and Saso, L. (2011). Antioxidant therapy: current status and future prospects. Curr. Med. Chem. 18, 3871–3888. doi: 10.2174/092986711803414368 DOI: https://doi.org/10.2174/092986711803414368

Forcados, G. E., James, D. B., Sallau, A. B., Muhammad, A., and Mabeta, P. (2017). Oxidative stress and carcinogenesis: potential of phytochemicals in breast cancer therapy. Nutr. Cancer 69, 365–374. doi: 10.1080/01635581.2017.1267777 DOI: https://doi.org/10.1080/01635581.2017.1267777

Forman, H. J., and Torres, M. (2002). Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am. J. Respir. Crit. Care Med. 166, S4–S8. DOI: https://doi.org/10.1164/rccm.2206007

Forni, C., Facchiano, F., Bartoli, M., Pieretti, S., Facchiano, A., D’arcangelo, D., et al. (2019). Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res. Int. 2019, 1–16. doi: 10.1155/2019/8748253 DOI: https://doi.org/10.1155/2019/8748253

Fountoucidou, P., Veskoukis, A. S., Kerasioti, E., Docea, A. O., Taitzoglou, I. A., Liesivuori, J., et al. (2019). A mixture of routinely encountered xenobiotics induces both redox adaptations and perturbations in blood and tissues of rats after a long-term low-dose exposure regimen: The time and dose issue. Toxicol. Lett. 317, 24–44. doi: 10.1016/j.toxlet.2019.09.015 DOI: https://doi.org/10.1016/j.toxlet.2019.09.015

Galati, G., and O’Brien, P. J. (2004). Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med. 37, 287–303. doi: 10.1016/j.freeradbiomed.2004.04.034 DOI: https://doi.org/10.1016/j.freeradbiomed.2004.04.034

Gandhi, S., and Abramov, A. Y. (2012). Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longev. 2012:428010. DOI: https://doi.org/10.1155/2012/428010

Gaziano, J. M., Glynn, R. J., Christen, W. G., Kurth, T., Belanger, C., Macfadyen, J., et al. (2009). Vitamins e and c in the prevention of prostate and total cancer in men: the physicians’ health study ii randomized controlled trial. Jama 301, 52–62. DOI: https://doi.org/10.1001/jama.2008.862

Gebicka, L., and Didik, J. (2009). Catalytic scavenging of peroxynitrite by catalase. J. inorg. Biochem. 103, 1375–1379. doi: 10.1016/j.jinorgbio.2009.07.011 DOI: https://doi.org/10.1016/j.jinorgbio.2009.07.011

Glasauer, A., and Chandel, N. S. (2014). Targeting antioxidants for cancer therapy. Biochem. Pharmacol. 92, 90–101. doi: 10.1016/j.bcp.2014.07.017 DOI: https://doi.org/10.1016/j.bcp.2014.07.017

Goodman, M., Bostick, R. M., Kucuk, O., and Jones, D. P. (2011). Clinical trials of antioxidants as cancer prevention agents: past, present, and future. Free Radic. Biol. Med. 51, 1068–1084. doi: 10.1016/j.freeradbiomed.2011.05.018 DOI: https://doi.org/10.1016/j.freeradbiomed.2011.05.018

Grigoras, A. G. (2017). Catalase immobilization—A review. Biochem. Eng. J. 117, 1–20. doi: 10.1016/j.bej.2016.10.021 DOI: https://doi.org/10.1016/j.bej.2016.10.021

Gutteridge, J. M., and Halliwell, B. (2000). Free radicals and antioxidants in the year 2000. A historical look to the future. Ann. N.Y.Acad. Sci. 899, 136–147. doi: 10.1111/j.1749-6632.2000.tb06182.x DOI: https://doi.org/10.1111/j.1749-6632.2000.tb06182.x

Hamanaka, R. B., Glasauer, A., Hoover, P., Yang, S., Blatt, H., Mullen, A. R., et al. (2013). Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development. Sci. Signal. 6:ra8. doi: 10.1126/scisignal.2003638 DOI: https://doi.org/10.1126/scisignal.2003638

Hare, J. M., and Stamler, J. S. (2005). NO/redox disequilibrium in the failing heart and cardiovascular system. J. Clin. Invest. 115, 509–517. doi: 10.1172/jci200524459 DOI: https://doi.org/10.1172/JCI24459

Hasanuzzaman, M., Nahar, K., Anee, T. I., and Fujita, M. (2017). Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants 23, 249–268. doi: 10.1007/s12298-017-0422-2 DOI: https://doi.org/10.1007/s12298-017-0422-2

He, F., and Zuo, L. (2015). Redox roles of reactive oxygen species in cardiovascular diseases. Int. J. Mol. Sci. 16, 27770–27780. doi: 10.3390/ijms161126059 DOI: https://doi.org/10.3390/ijms161126059

Hernández-Almanza, A., Montañez, J., Martínez, G., Aguilar-Jiménez, A., Contreras-Esquivel, J. C., and Aguilar, C. N. (2016). Lycopene: progress in microbial production. Trends Food Sci. Technol. 56, 142–148. doi: 10.1016/j.tifs.2016.08.013 DOI: https://doi.org/10.1016/j.tifs.2016.08.013

Herrera, B., Murillo, M. M., Alvarez-Barrientos, A., Beltran, J., Fernandez, M., and Fabregat, I. (2004). Source of early reactive oxygen species in the apoptosis induced by transforming growth factor-beta in fetal rat hepatocytes. Free Radic. Biol. Med. 36, 16–26. doi: 10.1016/j.freeradbiomed.2003.09.020 DOI: https://doi.org/10.1016/j.freeradbiomed.2003.09.020

Homem de Bittencourt, P. I. Jr., and Curi, R. (2001). Antiproliferative prostaglandins and the MRP/GS-X pump role in cancer immunosuppression and insight into new strategies in cancer gene therapy. Biochem. Pharmacol. 62, 811–819. doi: 10.1016/s0006-2952(01)00738-9 DOI: https://doi.org/10.1016/S0006-2952(01)00738-9

Hsu, T. C., Young, M. R., Cmarik, J., and Colburn, N. H. (2000). Activator protein 1 (AP-1)- and nuclear factor kappaB (NF-kappaB)-dependent transcriptional events in carcinogenesis. Free Radic. Biol. Med. 28, 1338–1348. doi: 10.1016/s0891-5849(00)00220-3 DOI: https://doi.org/10.1016/S0891-5849(00)00220-3

Hu, N., and Ren, J. (2016). Reactive oxygen species regulate myocardial mitochondria through post-translational modification. React. Oxyg. Species 2, 264–271. DOI: https://doi.org/10.20455/ros.2016.845

Huai, J., and Zhang, Z. (2019). Structural properties and interaction partners of familial ALS-associated SOD1 mutants. Front. Neurol. 10:527. doi: 10.3389/fneur.2019.00527 DOI: https://doi.org/10.3389/fneur.2019.00527

Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M. C. B., and Rahu, N. (2016). Oxidative stress and inflammation: what polyphenols can do for us? Oxid. Med. Cell. Longev. 2016:7432797. DOI: https://doi.org/10.1155/2016/7432797

Imam, M. U., Zhang, S., Ma, J., Wang, H., and Wang, F. (2017). Antioxidants mediate both iron homeostasis and oxidative stress. Nutrients 9:671. doi: 10.3390/nu9070671 DOI: https://doi.org/10.3390/nu9070671

Jan, A. T., Azam, M., Siddiqui, K., Ali, A., Choi, I., and Haq, Q. M. (2015). Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 16, 29592–29630. doi: 10.3390/ijms161226183 DOI: https://doi.org/10.3390/ijms161226183

Jaramillo, M. C., and Zhang, D. D. (2013). The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 27, 2179–2191. doi: 10.1101/gad.225680.113 DOI: https://doi.org/10.1101/gad.225680.113

Jerome-Morais, A., Diamond, A. M., and Wright, M. E. (2011). Dietary supplements and human health: for better or for worse? Mol. Nutr. Food Res. 55, 122–135. doi: 10.1002/mnfr.201000415 DOI: https://doi.org/10.1002/mnfr.201000415

Jomova, K., and Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology 283, 65–87. doi: 10.1016/j.tox.2011.03.001 DOI: https://doi.org/10.1016/j.tox.2011.03.001

Kabe, Y., Ando, K., Hirao, S., Yoshida, M., and Handa, H. (2005). Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid. Redox. Signal. 7, 395–403. doi: 10.1089/ars.2005.7.395 DOI: https://doi.org/10.1089/ars.2005.7.395

Kaminski, K. A., Bonda, T. A., Korecki, J., and Musial, W. J. (2002). Oxidative stress and neutrophil activation—the two keystones of ischemia/reperfusion injury. Int. J. Cardiol. 86, 41–59. doi: 10.1016/s0167-5273(02)00189-4 DOI: https://doi.org/10.1016/S0167-5273(02)00189-4

Kang, Y. (1996). Chen Y, and epstein PN. Suppression of doxorubicin cardiotoxicity by overexpression of catalase in the heart of transgenic mice. J. Biol. Chem. 271, 12610–12616. doi: 10.1074/jbc.271.21.12610 DOI: https://doi.org/10.1074/jbc.271.21.12610

Karam, B. S., Chavez-Moreno, A., Koh, W., Akar, J. G., and Akar, F. G. (2017). Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovasc. Diabetol. 16:120. DOI: https://doi.org/10.1186/s12933-017-0604-9

Kimura, S., Tung, Y. C., Pan, M. H., Su, N. W., Lai, Y. J., and Cheng, K. C. (2017). Black garlic: a critical review of its production, bioactivity, and application. J. Food Drug Anal. 25, 62–70. doi: 10.1016/j.jfda.2016.11.003 DOI: https://doi.org/10.1016/j.jfda.2016.11.003

Klein, E. A., Thompson, I. M. Jr., Tangen, C. M., Crowley, J. J., Lucia, M. S., and Goodman, P. J. (2011). Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). Jama 306, 1549–1556. DOI: https://doi.org/10.1001/jama.2011.1437

Kocot, J., Luchowska-Kocot, D., Kielczykowska, M., Musik, I., and Kurzepa, J. (2017). Does vitamin C influence neurodegenerative diseases and psychiatric disorders? Nutrients 9:659. doi: 10.3390/nu9070659 DOI: https://doi.org/10.3390/nu9070659

Kostoff, R. N., Heroux, P., Aschner, M., and Tsatsakis, A. (2020). Adverse health effects of 5G mobile networking technology under real-life conditions. Toxicol. Lett. 232, 35–40. doi: 10.1016/j.toxlet.2020.01.020 DOI: https://doi.org/10.1016/j.toxlet.2020.01.020

Kucukgoncu, S., Zhou, E., Lucas, K. B., and Tek, C. (2017). Alpha-lipoic acid (ALA) as a supplementation for weight loss: results from a meta-analysis of randomized controlled trials. Obes. Rev. 18, 594–601. doi: 10.1111/obr.12528 DOI: https://doi.org/10.1111/obr.12528

Kumar, S., and Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: an overview. Sci. World J. 2013:16. DOI: https://doi.org/10.1155/2013/162750

Kurutas, E. B. (2015). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr. J. 15, 71. DOI: https://doi.org/10.1186/s12937-016-0186-5

Lamy, M., Mathy-Hartert, M., and Deby-Dupont, G. (1996). “Neutrophil-induced Oxidative Stress,” in Yearbook of Intensive Care and Emergency Medicine, ed. J. L. Vincent (Berlin: Springer), 83–95. DOI: https://doi.org/10.1007/978-3-642-80053-5_8

Lazzarino, G., Listorti, I., Bilotta, G., Capozzolo, T., Amorini, A. M., Longo, S., et al. (2019). Water- and fat-soluble antioxidants in human seminal plasma and serum of fertile males. Antioxidants 8:96. doi: 10.3390/antiox8040096 DOI: https://doi.org/10.3390/antiox8040096

Lee, I. M., Cook, N. R., Gaziano, J. M., Gordon, D., Ridker, P. M., Manson, J. E., et al. (2005). Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women’s Health Study: a randomized controlled trial. Jama 294, 56–65. DOI: https://doi.org/10.1001/jama.294.1.56

Lee, S. Q., Tan, T. S., Kawamukai, M., and Chen, E. S. (2017). Cellular factories for coenzyme Q10 production. Microb. Cell Fact. 16:39. DOI: https://doi.org/10.1186/s12934-017-0646-4

Li, H., Horke, S., and Forstermann, U. (2014). Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 237, 208–219. doi: 10.1016/j.atherosclerosis.2014.09.001 DOI: https://doi.org/10.1016/j.atherosclerosis.2014.09.001

Li, J., Wuliji, O., Li, W., Jiang, Z.-G., and Ghanbari, H. A. (2013). Oxidative stress and neurodegenerative disorders. Int. J. Mol. Sci. 14, 24438–24475. DOI: https://doi.org/10.3390/ijms141224438

Li, W., Cao, L., Han, L., Xu, Q., and Ma, Q. (2015). Superoxide dismutase promotes the epithelial-mesenchymal transition of pancreatic cancer cells via activation of the H2O2/ERK/NF-κB axis. Int. J. Oncol. 46, 2613–2620. doi: 10.3892/ijo.2015.2938 DOI: https://doi.org/10.3892/ijo.2015.2938

Liang, X., Wang, S., Wang, L., Ceylan, A. F., Ren, J., and Zhang, Y. (2020). Mitophagy inhibitor liensinine suppresses doxorubicin-induced cardiotoxicity through inhibition of drp1-mediated maladaptive mitochondrial fission. Pharmacol. Res. 157:104846. doi: 10.1016/j.phrs.2020.104846 DOI: https://doi.org/10.1016/j.phrs.2020.104846

Liguori, I., Russo, G., Aran, L., Bulli, G., Curcio, F., Della-Morte, D., et al. (2018). Sarcopenia: assessment of disease burden and strategies to improve outcomes. Clin. Interv. Aging 13:913. doi: 10.2147/cia.s149232 DOI: https://doi.org/10.2147/CIA.S149232

Lin, J., Cook, N. R., Albert, C., Zaharris, E., Gaziano, J. M., Van Denburgh, M., et al. (2009). Vitamins C and E and beta carotene supplementation and cancer risk: a randomized controlled trial. J. Natl. Cancer Inst. 101, 14–23. doi: 10.1093/jnci/djn438 DOI: https://doi.org/10.1093/jnci/djn438

Liou, G. Y., Doppler, H., Delgiorno, K. E., Zhang, L., Leitges, M., Crawford, H. C., et al. (2016). Mutant KRas-induced mitochondrial oxidative stress in acinar cells upregulates EGFR signaling to drive formation of pancreatic precancerous lesions. Cell Rep. 14, 2325–2336. doi: 10.1016/j.celrep.2016.02.029 DOI: https://doi.org/10.1016/j.celrep.2016.02.029

Liu, Z.-Q. (2019). Bridging free radical chemistry with drug discovery: a promising way for finding novel drugs efficiently. Eur. J. Med. Chem. 189:112020. doi: 10.1016/j.ejmech.2019.112020 DOI: https://doi.org/10.1016/j.ejmech.2019.112020

Lü, J.-M., Lin, P. H., Yao, Q., and Chen, C. (2010). Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J. Cell. Mol.Med. 14, 840–860. doi: 10.1111/j.1582-4934.2009.00897.x DOI: https://doi.org/10.1111/j.1582-4934.2009.00897.x

Mach, F., Schonbeck, U., and Libby, P. (1998). CD40 signaling in vascular cells: a key role in atherosclerosis? Atherosclerosis 137(Suppl.), S89–S95. DOI: https://doi.org/10.1016/S0021-9150(97)00309-2

Mahajan, L., Verma, P. K., Raina, R., Pankaj, N. K., Sood, S., and Singh, M. (2018). Alteration in thiols homeostasis, protein and lipid peroxidation in renal tissue following subacute oral exposure of imidacloprid and arsenic in Wistar rats. Toxicol. Rep. 5, 1114–1119. doi: 10.1016/j.toxrep.2018.11.003 DOI: https://doi.org/10.1016/j.toxrep.2018.11.003

Marchitti, S. A., Chen, Y., Thompson, D. C., and Vasiliou, V. (2011). Ultraviolet radiation: cellular antioxidant response and the role of ocular aldehyde dehydrogenase enzymes. Eye Contact Lens 37:206. doi: 10.1097/icl.0b013e3182212642 DOI: https://doi.org/10.1097/ICL.0b013e3182212642

Marti, R., Rosello, S., and Cebolla-Cornejo, J. (2016). Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers 8:58. doi: 10.3390/cancers8060058 DOI: https://doi.org/10.3390/cancers8060058

Meybodi, N. M., Mortazavian, A. M., Monfared, A. B., Sohrabvandi, S., and Meybodi, F. A. (2017). Phytochemicals in Cancer prevention: a review of the evidence. Int. J. Cancer Manag. 10:e7219.

Miltonprabu, S., Sumedha, N. C., and Senthilraja, P. (2017). Diallyl trisulfide, a garlic polysulfide protects against As-induced renal oxidative nephrotoxicity, apoptosis and inflammation in rats by activating the Nrf2/ARE signaling pathway. Int. Immunopharmacol. 50, 107–120. doi: 10.1016/j.intimp.2017.06.011 DOI: https://doi.org/10.1016/j.intimp.2017.06.011

Mishra, A. P., Salehi, B., Sharifi-Rad, M., Pezzani, R., Kobarfard, F., Sharifi-Rad, J., et al. (2018). Programmed Cell death, from a cancer perspective: an overview. Mol. Diagn. Ther. 22, 281–295. DOI: https://doi.org/10.1007/s40291-018-0329-9

Murr, C., Schroecksnadel, K., Winkler, C., Ledochowski, M., and Fuchs, D. (2005). Antioxidants may increase the probability of developing allergic diseases and asthma. Med. Hypotheses 64, 973–977. doi: 10.1016/j.mehy.2004.11.011 DOI: https://doi.org/10.1016/j.mehy.2004.11.011

Niedzielska, E., Smaga, I., Gawlik, M., Moniczewski, A., Stankowicz, P., Pera, J., et al. (2016). Oxidative stress in neurodegenerative diseases. Mol. Neurobiol. 53, 4094–4125. DOI: https://doi.org/10.1007/s12035-015-9337-5

Nussbaum, L., Hogea, L. M., Cãlina, D., Andreescu, N., Grãdinaru, R., ?tefãnescu, R., et al. (2017). Modern treatment approaches in psychoses. Pharmacogenetic, neuroimagistic and clinical implications. Farmacia 65, 75–81.

Oke, G. O., Abiodun, A. A., Imafidon, C. E., and Monsi, B. F. (2019). Zingiber officinale (Roscoe) mitigates CCl4-induced liver histopathology and biochemical derangements through antioxidant, membrane-stabilizing and tissue-regenerating potentials. Toxicol. Rep. 6, 416–425. doi: 10.1016/j.toxrep.2019.05.001 DOI: https://doi.org/10.1016/j.toxrep.2019.05.001

Padureanu, R., Albu, C. V., Mititelu, R. R., Bacanoiu, M. V., Docea, A. O., Calina, D., et al. (2019). Oxidative stress and inflammation interdependence in multiple sclerosis. J. Clin. Med. 8:1815. doi: 10.3390/jcm8111815 DOI: https://doi.org/10.3390/jcm8111815

Panic, N., Nedovic, D., Pastorino, R., Boccia, S., and Leoncini, E. (2017). Carotenoid intake from natural sources and colorectal cancer: a systematic review and meta-analysis of epidemiological studies. Eur. J. Cancer Prev. 26, 27–37. doi: 10.1097/cej.0000000000000251 DOI: https://doi.org/10.1097/CEJ.0000000000000251

Papa, S., Martino, P. L., Capitanio, G., Gaballo, A., De Rasmo, D., Signorile, A., et al. (2012). The oxidative phosphorylation system in mammalian mitochondria. Adv. Exp. Med. Biol. 942, 3–37. DOI: https://doi.org/10.1007/978-94-007-2869-1_1

Park, L., Zhou, P., Pitstick, R., Capone, C., Anrather, J., Norris, E. H., et al. (2008). Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc. Natl. Acad. Sci. US.A. 105, 1347–1352. doi: 10.1073/pnas.0711568105 DOI: https://doi.org/10.1073/pnas.0711568105

Park, M. H., Jo, M., Kim, Y. R., Lee, C. K., and Hong, J. T. (2016). Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases. Pharmacol. Ther. 163, 1–23. doi: 10.1016/j.pharmthera.2016.03.018 DOI: https://doi.org/10.1016/j.pharmthera.2016.03.018

Pasinelli, P., Belford, M. E., Lennon, N., Bacskai, B. J., Hyman, B. T., Trotti, D., et al. (2004). Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron 43, 19–30. doi: 10.1016/j.neuron.2004.06.021 DOI: https://doi.org/10.1016/j.neuron.2004.06.021

Payne, B. A. I., and Chinnery, P. F. (2015). Mitochondrial dysfunction in aging: much progress but many unresolved questions. Biochim. Biophys. Acta 1847, 1347–1353. doi: 10.1016/j.bbabio.2015.05.022 DOI: https://doi.org/10.1016/j.bbabio.2015.05.022

Peake, J., and Suzuki, K. (2004). Neutrophil activation, antioxidant supplements and exercise-induced oxidative stress. Exerc. Immunol. Rev. 10, 129–141.

Pei, Z., Deng, Q., Babcock, S. A., He, E. Y., Ren, J., and Zhang, Y. (2018). Inhibition of advanced glycation endproduct (AGE) rescues against streptozotocin-induced diabetic cardiomyopathy: role of autophagy and ER stress. Toxicol. Lett. 284, 10–20. doi: 10.1016/j.toxlet.2017.11.018 DOI: https://doi.org/10.1016/j.toxlet.2017.11.018

Perera, N. C. N., Godahewa, G. I., Lee, S., Kim, M. J., Hwang, J. Y., Kwon, M. G., et al. (2017). Manganese-superoxide dismutase (MnSOD), a role player in seahorse (Hippocampus abdominalis) antioxidant defense system and adaptive immune system. Fish Shellfish Immunol. 68, 435–442. doi: 10.1016/j.fsi.2017.07.049 DOI: https://doi.org/10.1016/j.fsi.2017.07.049

Perrotta, I., and Aquila, S. (2015). The role of oxidative stress and autophagy in atherosclerosis. Oxid. Med. Cell. Longev. 2015:130315. DOI: https://doi.org/10.1155/2015/130315

Pingitore, A., Lima, G. P. P., Mastorci, F., Quinones, A., Iervasi, G., and Vassalle, C. (2015). Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition 31, 916–922. doi: 10.1016/j.nut.2015.02.005 DOI: https://doi.org/10.1016/j.nut.2015.02.005

Pizzino, G., Bitto, A., Interdonato, M., Galfo, F., Irrera, N., Mecchio, A., et al. (2014). Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the Milazzo-Valle del Mela area (Sicily. Italy). Redox. Biol. 2, 686–693. doi: 10.1016/j.redox.2014.05.003 DOI: https://doi.org/10.1016/j.redox.2014.05.003

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., et al. (2017). Oxidative stress: harms and benefits for human health. Oxid. Med. Cell. Longev. 2017:8416763. DOI: https://doi.org/10.1155/2017/8416763

Poli, G., Leonarduzzi, G., Biasi, F., and Chiarpotto, E. (2004). Oxidative stress and cell signalling. Curr. Med. Chem. 11, 1163–1182. doi: 10.2174/0929867043365323 DOI: https://doi.org/10.2174/0929867043365323

Poole, L. B., and Nelson, K. J. (2016). Distribution and features of the six classes of peroxiredoxins. Mol. Cells 39, 53–59. doi: 10.14348/molcells.2016.2330 DOI: https://doi.org/10.14348/molcells.2016.2330

Poprac, P., Jomova, K., Simunkova, M., Kollar, V., Rhodes, C. J., and Valko, M. (2017). Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci. 38, 592–607. doi: 10.1016/j.tips.2017.04.005 DOI: https://doi.org/10.1016/j.tips.2017.04.005

Prochazkova, D., Bousova, I., and Wilhelmova, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82, 513–523. doi: 10.1016/j.fitote.2011.01.018 DOI: https://doi.org/10.1016/j.fitote.2011.01.018

Ramsay, R. R. (2019). Electron carriers and energy conservation in mitochondrial respiration. Chem. Texts 5:9. DOI: https://doi.org/10.1007/s40828-019-0085-4

Rasouli, H., Farzaei, M. H., Mansouri, K., Mohammadzadeh, S., and Khodarahmi, R. (2016). Plant cell cancer: may natural phenolic compounds prevent onset and development of plant cell malignancy? A literature review. Molecules 21:1104. doi: 10.3390/molecules21091104 DOI: https://doi.org/10.3390/molecules21091104

Ray, P. D., Huang, B.-W., and Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24, 981–990. doi: 10.1016/j.cellsig.2012.01.008 DOI: https://doi.org/10.1016/j.cellsig.2012.01.008

Reddy, P. H. (2009). Role of mitochondria in neurodegenerative diseases: mitochondria as a therapeutic target in Alzheimer’s disease. CNS Spectr. 14, 8–18. DOI: https://doi.org/10.1017/S1092852900024901

Reid, M. B. (2001). Invited Review: redox modulation of skeletal muscle contraction: what we know and what we don’t. J. Appl. Physiol. 90, 724–731. doi: 10.1152/jappl.2001.90.2.724 DOI: https://doi.org/10.1152/jappl.2001.90.2.724

Ren, J., and Taegtmeyer, H. (2015). Too much or not enough of a good thing—The Janus faces of autophagy in cardiac fuel and protein homeostasis. J. Mol. Cell. Cardiol. 84, 223–226. doi: 10.1016/j.yjmcc.2015.03.001 DOI: https://doi.org/10.1016/j.yjmcc.2015.03.001

Reuter, S., Gupta, S. C., Chaturvedi, M. M., and Aggarwal, B. B. (2010). Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med. 49, 1603–1616. doi: 10.1016/j.freeradbiomed.2010.09.006 DOI: https://doi.org/10.1016/j.freeradbiomed.2010.09.006

Riederer, P., Sofic, E., Rausch, W. D., Schmidt, B., Reynolds, G. P., Jellinger, K., et al. (1989). Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J. Neurochem. 52, 515–520. doi: 10.1111/j.1471-4159.1989.tb09150.x DOI: https://doi.org/10.1111/j.1471-4159.1989.tb09150.x

Rodriguez, R., and Redman, R. (2005). Balancing the generation and elimination of reactive oxygen species. Proc. Natl. Acad. Sci. 102, 3175–3176. doi: 10.1073/pnas.0500367102 DOI: https://doi.org/10.1073/pnas.0500367102

Roychoudhury, S., Agarwal, A., Virk, G., and Cho, C. L. (2017). Potential role of green tea catechins in the management of oxidative stress-associated infertility. Reprod. Biomed. Online 34, 487–498. doi: 10.1016/j.rbmo.2017.02.006 DOI: https://doi.org/10.1016/j.rbmo.2017.02.006

Saccon, R. A., Bunton-Stasyshyn, R. K., Fisher, E. M., and Fratta, P. (2013). Is SOD1 loss of function involved in amyotrophic lateral sclerosis? Brain 136, 2342–2358. doi: 10.1093/brain/awt097 DOI: https://doi.org/10.1093/brain/awt097

Sackesen, C., Ercan, H., Dizdar, E., Soyer, O., Gumus, P., Tosun, B. N., et al. (2008). A comprehensive evaluation of the enzymatic and nonenzymatic antioxidant systems in childhood asthma. J. Allergy Clin. Immunol. 122, 78–85. doi: 10.1016/j.jaci.2008.03.035 DOI: https://doi.org/10.1016/j.jaci.2008.03.035

Saez, I., and Vilchez, D. (2014). The mechanistic links between proteasome activity, aging and age-related diseases. Curr. Genomics 15, 38–51. doi: 10.2174/138920291501140306113344 DOI: https://doi.org/10.2174/138920291501140306113344

Sage, E., Girard, P.-M., and Francesconi, S. (2012). Unravelling UVA-induced mutagenesis. Photochem. Photobiol. Sci. 11, 74–80. doi: 10.1039/c1pp05219e DOI: https://doi.org/10.1039/c1pp05219e

Saha, S. K., Lee, S. B., Won, J., Choi, H. Y., Kim, K., Yang, G. M., et al. (2017). Correlation between oxidative stress, nutrition, and cancer initiation. Int. J. Mol. Sci. 18:1544. doi: 10.3390/ijms18071544 DOI: https://doi.org/10.3390/ijms18071544

Salehi, B., Calina, D., Docea, A. O., Koirala, N., Aryal, S., Lombardo, D., et al. (2020a). Curcumin’s nanomedicine formulations for therapeutic application in neurological diseases. J. Clin. Med. 9:430. doi: 10.3390/jcm9020430 DOI: https://doi.org/10.3390/jcm9020430

Salehi, B., Rescigno, A., Dettori, T., Calina, D., Docea, A. O., Singh, L., et al. (2020b). Avocado–soybean unsaponifiables: a panoply of potentialities to be exploited. Biomolecules 10:130. doi: 10.3390/biom10010130 DOI: https://doi.org/10.3390/biom10010130

Salehi, B., Capanoglu, E., Adrar, N., Catalkaya, G., Shaheen, S., Jaffer, M., et al. (2019a). Cucurbits plants: a key emphasis to its pharmacological potential. Molecules 24:1854. doi: 10.3390/molecules24101854 DOI: https://doi.org/10.3390/molecules24101854

Salehi, B., Lopez-Jornet, P., Pons-Fuster López, E., Calina, D., Sharifi-Rad, M., Ramírez-Alarcón, K., et al. (2019b). Plant-derived bioactives in oral mucosal lesions: a key emphasis to curcumin, lycopene, chamomile, aloe vera, green tea and coffee properties. Biomolecules 9:106. doi: 10.3390/biom9030106 DOI: https://doi.org/10.3390/biom9030106

Salehi, B., Sestito, S., Rapposelli, S., Peron, G., Calina, D., Sharifi-Rad, M., et al. (2019c). Epibatidine: a promising natural alkaloid in health. Biomolecules 9:6. doi: 10.3390/biom9010006 DOI: https://doi.org/10.3390/biom9010006

Salehi, B., Shivaprasad Shetty, M. V., Anil Kumar, N., Živkoviæ, J., Calina, D., Oana Docea, A., et al. (2019d). Veronica Plants—Drifting from farm to traditional healing, food application, and phytopharmacology. Molecules 24:2454. doi: 10.3390/molecules24132454 DOI: https://doi.org/10.3390/molecules24132454

Salehi, B., Martorell, M., Arbiser, J. L., Sureda, A., Martins, N., Maurya, P. K., et al. (2018). Antioxidants: positive or negative actors? Biomolecules 8:124. doi: 10.3390/biom8040124 DOI: https://doi.org/10.3390/biom8040124

Sani, T. A., Mohammadpour, E., Mohammadi, A., Memariani, T., Yazdi, M. V., Rezaee, R., et al. (2017). Cytotoxic and apoptogenic properties of Dracocephalum kotschyi aerial part different fractions on calu-6 and mehr-80 lung cancer cell lines. Farmacia 65, 189–199.

Sanjust, E., Mocci, G., Zucca, P., and Rescigno, A. (2008). Mediterranean shrubs as potential antioxidant sources. Nat. Prod. Res. 22, 689–708. doi: 10.1080/14786410801997125 DOI: https://doi.org/10.1080/14786410801997125

Schottker, B., Brenner, H., Jansen, E. H., Gardiner, J., Peasey, A., Kubinova, R., et al. (2015). Evidence for the free radical/oxidative stress theory of ageing from the CHANCES consortium: a meta-analysis of individual participant data. BMC Med. 13:300. doi: 10.1186/s12916-015-0537-7 DOI: https://doi.org/10.1186/s12916-015-0537-7

Ściskalska, M., Zalewska, M., Grzelak, A., and Milnerowicz, H. (2014). The influence of the occupational exposure to heavy metals and tobacco smoke on the selected oxidative stress markers in smelters. Biol. Trace Element Res. 159, 59–68. doi: 10.1007/s12011-014-9984-9 DOI: https://doi.org/10.1007/s12011-014-9984-9

Sena, L. A., and Chandel, N. S. (2012). Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48, 158–167. doi: 10.1016/j.molcel.2012.09.025 DOI: https://doi.org/10.1016/j.molcel.2012.09.025

Seo, M. Y., and Lee, S. M. (2002). Protective effect of low dose of ascorbic acid on hepatobiliary function in hepatic ischemia/reperfusion in rats. J. Hepatol. 36, 72–77. doi: 10.1016/s0168-8278(01)00236-7 DOI: https://doi.org/10.1016/S0168-8278(01)00236-7

Sharifi-Rad, J., Rodrigues, C. F., Sharopov, F., Docea, A. O., Can Karaca, A., Sharifi-Rad, M., et al. (2020). Diet, lifestyle and cardiovascular diseases: linking pathophysiology to cardioprotective effects of natural bioactive compounds. Int. J. Environ. Res. Public Health 17:2326. doi: 10.3390/ijerph17072326 DOI: https://doi.org/10.3390/ijerph17072326

Sharifi-Rad, M., Lankatillake, C., Dias, D. A., Docea, A. O., Mahomoodally, M. F., Lobine, D., et al. (2020). Impact of natural compounds on neurodegenerative disorders: from preclinical to pharmacotherapeutics. J. Clin. Med. 9:1061. doi: 10.3390/jcm9041061 DOI: https://doi.org/10.3390/jcm9041061

Sharifi-Rad, J., Sharifi-Rad, M., Salehi, B., Iriti, M., Roointan, A., Mnayer, D., et al. (2018). In vitro and in vivo assessment of free radical scavenging and antioxidant activities of Veronica persica Poir. Cell. Mol. Biol. 64, 57–64. DOI: https://doi.org/10.14715/cmb/2018.64.8.9

Sharma, P., Jha, A. B., Dubey, R. S., and Pessarakli, M. (2012). reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012:26. DOI: https://doi.org/10.1155/2012/217037

Singh, R. B., Mengi, S. A., Xu, Y. J., Arneja, A. S., and Dhalla, N. S. (2002). Pathogenesis of atherosclerosis: a multifactorial process. Exp. Clin. Cardiol. 7, 40–53.

Singh, Y. P., Patel, R. N., Singh, Y., Butcher, R. J., Vishakarma, P. K., and Singh, R. K. B. (2017). Structure and antioxidant superoxide dismutase activity of copper(II) hydrazone complexes. Polyhedron 122, 1–15. doi: 10.1016/j.poly.2016.11.013 DOI: https://doi.org/10.1016/j.poly.2016.11.013

Smith, M. T., Guyton, K. Z., Gibbons, C. F., Fritz, J. M., Portier, C. J., Rusyn, I., et al. (2016). Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ. Health Perspect. 124, 713–721. doi: 10.1289/ehp.1509912 DOI: https://doi.org/10.1289/ehp.1509912

Sova, H., Jukkola-Vuorinen, A., Puistola, U., Kauppila, S., and Karihtala, P. (2010). 8-Hydroxydeoxyguanosine: a new potential independent prognostic factor in breast cancer. Br. J. Cancer 102, 1018–1023. doi: 10.1038/sj.bjc.6605565 DOI: https://doi.org/10.1038/sj.bjc.6605565

Spitz, D. R., Azzam, E. I., Li, J. J., and Gius, D. (2004). Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metast. Rev. 23, 311–322. doi: 10.1023/b:canc.0000031769.14728.bc DOI: https://doi.org/10.1023/B:CANC.0000031769.14728.bc

Spitz, D. R., and Hauer-Jensen, M. (2014). Ionizing Radiation-Induced Responses: Where Free Radical Chemistry Meets Redox Biology and Medicine. Rochelle, NY: Mary Ann Liebert, Inc. DOI: https://doi.org/10.1089/ars.2013.5769

Tafazoli, A. (2017). Coenzyme Q10 in breast cancer care. Future Oncol. 13, 1035–1041. doi: 10.2217/fon-2016-0547 DOI: https://doi.org/10.2217/fon-2016-0547

Takalo, M., Salminen, A., Soininen, H., Hiltunen, M., and Haapasalo, A. (2013). Protein aggregation and degradation mechanisms in neurodegenerative diseases. Am. J. Neurodegenerat. Dis. 2, 1–14.

Taverne, Y. J., Bogers, A. J., Duncker, D. J., and Merkus, D. (2013). Reactive oxygen species and the cardiovascular system. Oxid. Med. Cell. Longev. 2013:862423. DOI: https://doi.org/10.1155/2013/862423

Tovmasyan, A., Maia, C. G., Weitner, T., Carballal, S., Sampaio, R. S., Lieb, D., et al. (2015). A comprehensive evaluation of catalase-like activity of different classes of redox-active therapeutics. Free Radic. Biol. Med. 86, 308–321. doi: 10.1016/j.freeradbiomed.2015.05.018 DOI: https://doi.org/10.1016/j.freeradbiomed.2015.05.018

Tsatsakis, A., Docea, A. O., Calina, D., Tsarouhas, K., Zamfira, L.-M., Mitrut, R., et al. (2019). A mechanistic and pathophysiological approach for stroke associated with drugs of abuse. J. Clin. Med. 8:1295. doi: 10.3390/jcm8091295 DOI: https://doi.org/10.3390/jcm8091295

Tsatsakis, A. M., Docea, A. O., Calina, D., Buga, A. M., Zlatian, O., Gutnikov, S., et al. (2019). Hormetic Neurobehavioral effects of low dose toxic chemical mixtures in real-life risk simulation (RLRS) in rats. Food Chem. Toxicol. 125, 141–149. doi: 10.1016/j.fct.2018.12.043 DOI: https://doi.org/10.1016/j.fct.2018.12.043

Tse, G., Yan, B. P., Chan, Y. W., Tian, X. Y., and Huang, Y. (2016). Reactive oxygen species, endoplasmic reticulum stress and mitochondrial dysfunction: the link with cardiac arrhythmogenesis. Front. Physiol. 7:313. doi: 10.3389/fphys.2016.00313 DOI: https://doi.org/10.3389/fphys.2016.00313

Tsoukalas, D., Fragkiadaki, P., Docea, A. O., Alegakis, A. K., Sarandi, E., Thanasoula, M., et al. (2019a). Discovery of potent telomerase activators: unfolding new therapeutic and anti-aging perspectives. Mol. Med. Rep. 20, 3701–3708. DOI: https://doi.org/10.3892/mmr.2019.10614

Tsoukalas, D., Fragkiadaki, P., Docea, A. O., Alegakis, A. K., Sarandi, E., Vakonaki, E., et al. (2019b). Association of nutraceutical supplements with longer telomere length. Int. J. Mol. Med. 44, 218–226. DOI: https://doi.org/10.3892/ijmm.2019.4191

Tsoukalas, D., Fragoulakis, V., Sarandi, E., Docea, A. O., Papakonstantinou, E., Tsilimidos, G., et al. (2019c). Targeted metabolomic analysis of serum fatty acids for the prediction of autoimmune diseases. Front. Mol. Biosci. 6:120. doi: 10.3389/fmolb.2019.00120 DOI: https://doi.org/10.3389/fmolb.2019.00120

Valavanidis, A., Vlachogianni, T., and Fiotakis, K. (2009). Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int. J. Environ. Res. Public Health 6, 445–462. doi: 10.3390/ijerph6020445 DOI: https://doi.org/10.3390/ijerph6020445

Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., and Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44–84. doi: 10.1016/j.biocel.2006.07.001 DOI: https://doi.org/10.1016/j.biocel.2006.07.001

Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., and Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160, 1–40. doi: 10.1016/j.cbi.2005.12.009 DOI: https://doi.org/10.1016/j.cbi.2005.12.009

Wang, X., and Michaelis, E. K. (2010). Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci. 2:12. doi: 10.3389/fnagi.2010.00012 DOI: https://doi.org/10.3389/fnagi.2010.00012

Watson, R. R. (1998). Melatonin in the Promotion of Health, 2nd Edn. Boca Raton, FL: Taylor & Francis Group.

Wattanapitayakul, S. K., and Bauer, J. A. (2001). Oxidative pathways in cardiovascular disease: roles, mechanisms, and therapeutic implications. Pharmacol. Ther. 89, 187–206. doi: 10.1016/s0163-7258(00)00114-5 DOI: https://doi.org/10.1016/S0163-7258(00)00114-5

Wu, N. N., Tian, H., Chen, P., Wang, D., Ren, J., and Zhang, Y. (2019). Physical exercise and selective autophagy: benefit and risk on cardiovascular health. Cell 8:1436. doi: 10.3390/cells8111436 DOI: https://doi.org/10.3390/cells8111436

Wu, X., Liu, X., Huang, H., Li, Z., Xiong, T., Xiang, W., et al. (2019). Effects of major ozonated autoheamotherapy on functional recovery, ischemic brain tissue apoptosis and oxygen free radical damage in the rat model of cerebral ischemia. J. Cell. Biochem. 120, 6772–6780. doi: 10.1002/jcb.27978 DOI: https://doi.org/10.1002/jcb.27978

Ye, G., Metreveli, N. S., Donthi, R. V., Xia, S., Xu, M., Carlson, E. C., et al. (2004). Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes 53, 1336–1343. doi: 10.2337/diabetes.53.5.1336 DOI: https://doi.org/10.2337/diabetes.53.5.1336

Young, A. J., and Lowe, G. M. (2001). Antioxidant and prooxidant properties of carotenoids. Arch. Biochem. Biophys. 385, 20–27. doi: 10.1006/abbi.2000.2149 DOI: https://doi.org/10.1006/abbi.2000.2149

Zal, F., Taheri, R., Khademi, F., Keshavarz, E., Rajabi, S., and Mostafavi-Pour, Z. (2014). The combined effect of furosemide and propranolol on GSH homeostasis in ACHN renal cells. Toxicol. Mech. Methods 24, 412–416. doi: 10.3109/15376516.2014.926437 DOI: https://doi.org/10.3109/15376516.2014.926437

Zhang, J., and McCullough, P. A. (2016). Lipoic acid in the prevention of acute kidney injury. Nephron 134, 133–140. doi: 10.1159/000448666 DOI: https://doi.org/10.1159/000448666

Zhang, W., Wang, T., Qin, L., Gao, H. M., Wilson, B., Ali, S. F., et al. (2004). Neuroprotective effect of dextromethorphan in the MPTP Parkinson’s disease model: role of NADPH oxidase. Faseb. J. 18, 589–591. doi: 10.1096/fj.03-0983fje DOI: https://doi.org/10.1096/fj.03-0983fje

Zhou, H., Wang, S., Zhu, P., Hu, S., Chen, Y., and Ren, J. (2018). Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol. 15, 335–346. doi: 10.1016/j.redox.2017.12.019 DOI: https://doi.org/10.1016/j.redox.2017.12.019

Zhu, X., Jiang, S., Hu, N., Luo, F., Dong, H., Kang, Y. M., et al. (2014). Tumour necrosis factor-α inhibition with lenalidomide alleviates tissue oxidative injury and apoptosis in ob/ob obese mice. Clin. Exp. Pharmacol. Physiol. 41, 489–501. doi: 10.1111/1440-1681.12240 DOI: https://doi.org/10.1111/1440-1681.12240

Zucca, P., Argiolas, A., Nieddu, M., Pintus, M., Rosa, A., Sanna, F., et al. (2016). Biological activities and nutraceutical potentials of water extracts from different parts of cynomorium coccineum L. (Maltese Mushroom). Polish J. Food Nutr.l Sci. 66, 179–188. doi: 10.1515/pjfns-2016-0006 DOI: https://doi.org/10.1515/pjfns-2016-0006

Zucca, P., Rescigno, A., Rinaldi, A. C., and Sanjust, E. (2014). Biomimetic metalloporphines and metalloporphyrins as potential tools for delignification: molecular mechanisms and application perspectives. J. Mol. Catal. A Chem. 388-389, 2–34. doi: 10.1016/j.molcata.2013.09.010 DOI: https://doi.org/10.1016/j.molcata.2013.09.010

Published

15-01-2021

How to Cite

Alotaibi, F. M., Almazam, A. A., Alotaibi, ‏Motaeb, Emam, ‏Arwa M., Alqahtani, ‏Naif S., Alheggi, ‏Ashwaq I., Alanazi, ‏Ashwaq F., Alharbi, ‏Khlood K., Alhamed, ‏Arwa A., Ali, ‏Eman I. A., Alnemer, M. J., Alghamdi, ‏Mahfoudh S., Alomayrah, ‏Norah M., Alsharari, ‏Abdulaziz S., Alsharari , ‏Sami F., Alshamari, ‏Moteb R., Lamfon, ‏Nahid A., & Al-Qahtani, A. S. (2021). Exploring how lifestyle choices influence the management of chronic diseases-role of healthcare providers: Review article. International Journal of Health Sciences, 5(S1), 1100–1128. https://doi.org/10.53730/ijhs.v5nS1.15088

Issue

Section

Peer Review Articles

Most read articles by the same author(s)