Exploring the human microbiome: Its role and impact on overall health and disease prevention

https://doi.org/10.53730/ijhs.v2nS1.15085

Authors

  • Fahdah Mehsan Alotaibi KSA, National Guard Health Affairs
  • Abdulrhman Ali Almazam KSA, National Guard Health Affairs
  • Saleh Zuwayel Alenizi KSA, National Guard Health Affairs
  • ‏Maryam Helal Alanazi KSA, National Guard Health Affairs
  • ‏Nahid Ahmad Lamfon KSA, National Guard Health Affairs
  • Ali Eid Atallah Albalawi KSA, National Guard Health Affairs
  • Nasser Suliman Al-Nasser KSA, National Guard Health Affairs
  • Sultan Abdulaziz Altheyab KSA, National Guard Health Affairs

Keywords:

Human microbiome, disease prevention, microbiome research, microbial communities, health impacts, metagenomics

Abstract

Background: The human microbiome has emerged as a pivotal factor in health and disease, significantly influencing various physiological processes and disease outcomes. Despite advances in microbiome research, the integration of microbiome knowledge into clinical practice remains limited. This review aims to elucidate the role of the microbiome in health and disease, emphasizing its potential for disease prevention, diagnosis, and treatment. Aim: To provide a comprehensive overview of the human microbiome’s structure, function, and impact on overall health and disease prevention. The review seeks to bridge the gap between microbiome research and clinical application, facilitating a better understanding among medical professionals. Methods: The review synthesizes findings from recent microbiome studies, including those from large-scale initiatives such as the Human Microbiome Project and the MetaHIT consortium. It examines various methodologies used to study microbiome structure and function, including 16S rRNA sequencing, metagenomics, metatranscriptomics, proteomics, and metabolomics. Results: The review highlights the diverse roles of the microbiome in health, such as its impact on immune system development, metabolic processes, and disease prevention. It also discusses the implications of microbiome research for various diseases, including infectious diseases, inflammatory bowel diseases, obesity, and cardiovascular conditions. 

Downloads

Download data is not yet available.

References

Johnson-King, B., & Terry, S. F. (2016). Future of microbiomes through the National Microbiome Initiative. Genetic Testing and Molecular Biomarkers, 20(9), 561-562. https://doi.org/10.1089/gtmb.2016.29022.sjt DOI: https://doi.org/10.1089/gtmb.2016.29022.sjt

Melber, D. J., Teherani, A., & Schwartz, B. S. (2016). A comprehensive survey of preclinical microbiology curricula among US medical schools. Clinical Infectious Diseases, 63(2), 164-168. https://doi.org/10.1093/cid/ciw262 DOI: https://doi.org/10.1093/cid/ciw262

Koch, R. (1890). An address on bacteriological research. British Medical Journal, 2(1546), 380-383. DOI: https://doi.org/10.1136/bmj.2.1546.380

Gradmann, C. (2014). A spirit of scientific rigour: Koch’s postulates in twentieth-century medicine. Microbes and Infection, 16(10), 885-892. https://doi.org/10.1016/j.micinf.2014.08.012 DOI: https://doi.org/10.1016/j.micinf.2014.08.012

Gibbons, S. M., & Gilbert, J. A. (2015). Microbial diversity--exploration of natural ecosystems and microbiomes. Current Opinion in Genetics & Development, 35, 66-72. https://doi.org/10.1016/j.gde.2015.10.003 DOI: https://doi.org/10.1016/j.gde.2015.10.003

Casadevall, A., & Pirofski, L. A. (2015). What is a host? Incorporating the microbiota into the damage-response framework. Infection and Immunity, 83(1), 2-7. https://doi.org/10.1128/IAI.02627-14 DOI: https://doi.org/10.1128/IAI.02627-14

Li, J., Jia, H., Cai, X., et al. (2014). An integrated catalog of reference genes in the human gut microbiome. Nature Biotechnology, 32(8), 834-841. https://doi.org/10.1038/nbt.2942 DOI: https://doi.org/10.1038/nbt.2942

Proctor, L. M. (2016). The National Institutes of Health Human Microbiome Project. Seminars in Fetal & Neonatal Medicine, 21(6), 368-372. https://doi.org/10.1016/j.siny.2016.05.002 DOI: https://doi.org/10.1016/j.siny.2016.05.002

Marchesi, J. R., & Ravel, J. (2015). The vocabulary of microbiome research: A proposal. Microbiome, 3, 31. https://doi.org/10.1186/s40168-015-0094-5 DOI: https://doi.org/10.1186/s40168-015-0094-5

Whipps, J. M., Lewis, K., & Cooke, R. C. (1988). Mycoparasitism and plant disease control. In M. N. Burge (Ed.), Fungi in Biological Control Systems (pp. 161-188). Manchester University Press.

Tremaroli, V., & Backhed, F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature, 489(7415), 242-249. https://doi.org/10.1038/nature11552 DOI: https://doi.org/10.1038/nature11552

Manor, O., Levy, R., & Borenstein, E. (2014). Mapping the inner workings of the microbiome: Genomic- and metagenomic-based study of metabolism and metabolic interactions in the human microbiome. Cell Metabolism, 20(5), 742-752. https://doi.org/10.1016/j.cmet.2014.07.021 DOI: https://doi.org/10.1016/j.cmet.2014.07.021

Duffy, L. C., Raiten, D. J., Hubbard, V. S., et al. (2015). Progress and challenges in developing metabolic footprints from diet in human gut microbial cometabolism. The Journal of Nutrition, 145(5), 1123S-1130S. https://doi.org/10.3945/jn.114.194936 DOI: https://doi.org/10.3945/jn.114.194936

Hooper, L. V., Xu, J., Falk, P. G., et al. (1999). A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proceedings of the National Academy of Sciences, 96(17), 9833-9838. https://doi.org/10.1073/pnas.96.17.9833 DOI: https://doi.org/10.1073/pnas.96.17.9833

Cockburn, D. W., & Koropatkin, N. M. (2016). Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. Journal of Molecular Biology, 428(24), 3230-3252. https://doi.org/10.1016/j.jmb.2016.06.021 DOI: https://doi.org/10.1016/j.jmb.2016.06.021

Wong, J. M., de Souza, R., Kendall, C. W., et al. (2006). Colonic health: Fermentation and short chain fatty acids. Journal of Clinical Gastroenterology, 40(3), 235-243. https://doi.org/10.1097/00004836-200603000-00015 DOI: https://doi.org/10.1097/00004836-200603000-00015

Spanogiannopoulos, P., Bess, E. N., Carmody, R. N., et al. (2016). The microbial pharmacists within us: A metagenomic view of xenobiotic metabolism. Nature Reviews Microbiology, 14(5), 273-287. https://doi.org/10.1038/nrmicro.2016.17 DOI: https://doi.org/10.1038/nrmicro.2016.17

Haiser, H. J., Gootenberg, D. B., Chatman, K., et al. (2013). Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science, 341(6145), 295-298. https://doi.org/10.1126/science.1235872 DOI: https://doi.org/10.1126/science.1235872

Ridlon, J. M., Kang, D. J., & Hylemon, P. B. (2006). Bile salt biotransformations by human intestinal bacteria. Journal of Lipid Research, 47(2), 241-259. https://doi.org/10.1194/jlr.R500013-JLR200 DOI: https://doi.org/10.1194/jlr.R500013-JLR200

Wahlstrom, A., Sayin, S. I., Marschall, H. U., et al. (2016). Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metabolism, 24(1), 41-50. https://doi.org/10.1016/j.cmet.2016.05.005 DOI: https://doi.org/10.1016/j.cmet.2016.05.005

Fiorucci, S., & Distrutti, E. (2015). Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends in Molecular Medicine, 21(11), 702-714. https://doi.org/10.1016/j.molmed.2015.09.001 DOI: https://doi.org/10.1016/j.molmed.2015.09.001

Alawad, A. S., & Levy, C. (2016). FXR agonists: From bench to bedside, a guide for clinicians. Digestive Diseases and Sciences, 61(12), 3395-3404. https://doi.org/10.1007/s10620-016-4334-8 DOI: https://doi.org/10.1007/s10620-016-4334-8

Rooks, M. G., & Garrett, W. S. (2016). Gut microbiota, metabolites and host immunity. Nature Reviews Immunology, 16(6), 341-352. https://doi.org/10.1038/nri.2016.42 DOI: https://doi.org/10.1038/nri.2016.42

Olson, G. B., & Wostmann, B. S. (1966). Lymphocytopoiesis, plasmacytopoiesis and cellular proliferation in nonantigenically stimulated germfree mice. The Journal of Immunology, 97(2), 267-274. DOI: https://doi.org/10.4049/jimmunol.97.2.267

Sefik, E., Geva-Zatorsky, N., Oh, S., et al. (2015). Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science, 349(6251), 993-997. https://doi.org/10.1126/science.aaa9420 DOI: https://doi.org/10.1126/science.aaa9420

Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 9(5), 313-323. https://doi.org/10.1038/nri2515 DOI: https://doi.org/10.1038/nri2515

Schaedler, R. W., Dubs, R., & Costello, R. (1965). Association of germfree mice with bacteria isolated from normal mice. The Journal of Experimental Medicine, 122(1), 77-82. https://doi.org/10.1084/jem.122.1.77 DOI: https://doi.org/10.1084/jem.122.1.77

Stappenbeck, T. S., Hooper, L. V., & Gordon, J. I. (2002). Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proceedings of the National Academy of Sciences, 99(24), 15451-15455. https://doi.org/10.1073/pnas.202604299 DOI: https://doi.org/10.1073/pnas.202604299

Hooper, L. V. (2004). Bacterial contributions to mammalian gut development. Trends in Microbiology, 12(4), 129-134. https://doi.org/10.1016/j.tim.2004.01.001 DOI: https://doi.org/10.1016/j.tim.2004.01.001

Bonder, M. J., Kurilshikov, A., Tigchelaar, E. F., et al. (2016). The effect of host genetics on the gut microbiome. Nature Genetics, 48(11), 1407-1412. https://doi.org/10.1038/ng.3663 DOI: https://doi.org/10.1038/ng.3663

Sivan, A., Corrales, L., Hubert, N., et al. (2015). Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science, 350(6264), 1084-1089. https://doi.org/10.1126/science.aac4255 DOI: https://doi.org/10.1126/science.aac4255

Vetizou, M., Pitt, J. M., Daillère, R., et al. (2015). Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science, 350(6264), 1079-1084. https://doi.org/10.1126/science.aad1329 DOI: https://doi.org/10.1126/science.aad1329

Vollaard, E. J., & Clasener, H. A. (1994). Colonization resistance. Antimicrobial Agents and Chemotherapy, 38(3), 409-414. https://doi.org/10.1128/AAC.38.3.409 DOI: https://doi.org/10.1128/AAC.38.3.409

Lawley, T. D., & Walker, A. W. (2013). Intestinal colonization resistance. Immunology, 138(1), 1-11. https://doi.org/10.1111/j.1365-2567.2012.03616.x DOI: https://doi.org/10.1111/j.1365-2567.2012.03616.x

Bassis, C. M., Young, V. B., & Schmidt, T. M. (2013). Methods for characterizing microbial communities associated with the human body. In D. N. Fredricks (Ed.), The human microbiota: How microbial communities affect health and disease (pp. 51-74). Wiley. https://doi.org/10.1002/9781118409855.ch2 DOI: https://doi.org/10.1002/9781118409855.ch2

Walker, A. W. (2016). Studying the human microbiota. Advances in Experimental Medicine and Biology, 902, 5-32. https://doi.org/10.1007/978-3-319-31248-4_2 DOI: https://doi.org/10.1007/978-3-319-31248-4_2

Di Bella, J. M., Bao, Y., Gloor, G. B., et al. (2013). High throughput sequencing methods and analysis for microbiome research. Journal of Microbiological Methods, 95(3), 401-414. https://doi.org/10.1016/j.mimet.2013.08.011 DOI: https://doi.org/10.1016/j.mimet.2013.08.011

Allen-Vercoe, E. (2013). Bringing the gut microbiota into focus through microbial culture: Recent progress and future perspective. Current Opinion in Microbiology, 16(6), 625-629. https://doi.org/10.1016/j.mib.2013.09.008 DOI: https://doi.org/10.1016/j.mib.2013.09.008

Lagier, J. C., Armougom, F., Million, M., et al. (2012). Microbial culturomics: Paradigm shift in the human gut microbiome study. Clinical Microbiology and Infection, 18(12), 1185-1193. https://doi.org/10.1111/1469-0691.12023 DOI: https://doi.org/10.1111/1469-0691.12023

Sommer, M. O. (2015). Advancing gut microbiome research using cultivation. Current Opinion in Microbiology, 27, 127-132. https://doi.org/10.1016/j.mib.2015.08.004 DOI: https://doi.org/10.1016/j.mib.2015.08.004

Schloss, P. D., & Handelsman, J. (2004). Status of the microbial census. Microbiology and Molecular Biology Reviews, 68(4), 686-691. https://doi.org/10.1128/MMBR.68.4.686-691.2004 DOI: https://doi.org/10.1128/MMBR.68.4.686-691.2004

Pace, N. R., Stahl, D. A., Lane, D. J., et al. (1985). Analyzing natural microbial populations by rRNA sequences. ASM News, 51(1), 4-12. DOI: https://doi.org/10.1007/978-1-4757-0611-6_1

Woese, C. R., & Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences USA, 74(11), 5088-5090. https://doi.org/10.1073/pnas.74.11.5088 DOI: https://doi.org/10.1073/pnas.74.11.5088

Frank, D. N., & Pace, N. R. (2008). Gastrointestinal microbiology enters the metagenomics era. Current Opinion in Gastroenterology, 24(1), 4-10. https://doi.org/10.1097/MOG.0b013e3282f2b0e8 DOI: https://doi.org/10.1097/MOG.0b013e3282f2b0e8

Debelius, J., Song, S. J., Vazquez-Baeza, Y., et al. (2016). Tiny microbes, enormous impacts: What matters in gut microbiome studies? Genome Biology, 17, 217. https://doi.org/10.1186/s13059-016-1086-x DOI: https://doi.org/10.1186/s13059-016-1086-x

Westcott, S. L., & Schloss, P. D. (2015). De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units. PeerJ, 3, e1487. https://doi.org/10.7717/peerj.1487 DOI: https://doi.org/10.7717/peerj.1487

Morgan, X. C., & Huttenhower, C. (2014). Meta'omic analytic techniques for studying the intestinal microbiome. Gastroenterology, 146(6), 1437-1448.e1. https://doi.org/10.1053/j.gastro.2014.01.049 DOI: https://doi.org/10.1053/j.gastro.2014.01.049

Faust, K., Lahti, L., Gonze, D., et al. (2015). Metagenomics meets time series analysis: Unraveling microbial community dynamics. Current Opinion in Microbiology, 25, 56-66. https://doi.org/10.1016/j.mib.2015.04.004 DOI: https://doi.org/10.1016/j.mib.2015.04.004

Langille, M. G., Zaneveld, J., Caporaso, J. G., et al. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31(9), 814-821. https://doi.org/10.1038/nbt.2676 DOI: https://doi.org/10.1038/nbt.2676

Handelsman, J., Rondon, M. R., Brady, S. F., et al. (1998). Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chemistry & Biology, 5(10), R245-R249. https://doi.org/10.1016/S1074-5521(98)90108-9 DOI: https://doi.org/10.1016/S1074-5521(98)90108-9

Streit, W. R., & Schmitz, R. A. (2004). Metagenomics--the key to the uncultured microbes. Current Opinion in Microbiology, 7(5), 492-498. https://doi.org/10.1016/j.mib.2004.08.002 DOI: https://doi.org/10.1016/j.mib.2004.08.002

Verberkmoes, N. C., Russell, A. L., Shah, M., et al. (2009). Shotgun metaproteomics of the human distal gut microbiota. ISME Journal, 3(2), 179-189. https://doi.org/10.1038/ismej.2008.108 DOI: https://doi.org/10.1038/ismej.2008.108

Bjerrum, J. T., Wang, Y., Hao, F., et al. (2015). Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn’s disease, and healthy individuals. Metabolomics, 11(1), 122-133. https://doi.org/10.1007/s11306-014-0677-3 DOI: https://doi.org/10.1007/s11306-014-0677-3

Turnbaugh, P. J., Ley, R. E., Hamady, M., et al. (2007). The human microbiome project. Nature, 449(7164), 804-810. https://doi.org/10.1038/nature06244 DOI: https://doi.org/10.1038/nature06244

Proctor, L. M. (2011). The Human Microbiome Project in 2011 and beyond. Cell Host & Microbe, 10(4), 287-291. https://doi.org/10.1016/j.chom.2011.10.001 DOI: https://doi.org/10.1016/j.chom.2011.10.001

Gevers, D., Knight, R., Petrosino, J. F., et al. (2012). The Human Microbiome Project: A community resource for the healthy human microbiome. PLoS Biology, 10(8), e1001377. https://doi.org/10.1371/journal.pbio.1001377 DOI: https://doi.org/10.1371/journal.pbio.1001377

Human Microbiome Project. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207-214. https://doi.org/10.1038/nature11234 DOI: https://doi.org/10.1038/nature11234

Theriot, C. M., Koenigsknecht, M. J., Carlson, P. E. Jr, et al. (2014). Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nature Communications, 5, 3114. https://doi.org/10.1038/ncomms4114 DOI: https://doi.org/10.1038/ncomms4114

Frank, D. N., St Amand, A. L., Feldman, R. A., et al. (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences USA, 104(34), 13780-13785. https://doi.org/10.1073/pnas.0706625104 DOI: https://doi.org/10.1073/pnas.0706625104

Gevers, D., Kugathasan, S., Denson, L. A., et al. (2014). The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host & Microbe, 15(3), 382-392. https://doi.org/10.1016/j.chom.2014.02.005 DOI: https://doi.org/10.1016/j.chom.2014.02.005

Kemppainen, K. M., Ardissone, A. N., Davis-Richardson, A. G., et al. (2015). Early childhood gut microbiomes show strong geographic differences among subjects at high risk for type 1 diabetes. Diabetes Care, 38(2), 329-332. https://doi.org/10.2337/dc14-0850 DOI: https://doi.org/10.2337/dc14-0850

Young, V. B., Raffals, L. H., Huse, S. M., et al. (2013). Multiphasic analysis of the temporal development of the distal gut microbiota in patients following ileal pouch anal anastomosis. Microbiome, 1(1), 9. https://doi.org/10.1186/2049-2618-1-9 DOI: https://doi.org/10.1186/2049-2618-1-9

Morgan, X. C., Tickle, T. L., Sokol, H., et al. (2012). Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biology, 13(9), R79. https://doi.org/10.1186/gb-2012-13-9-r79 DOI: https://doi.org/10.1186/gb-2012-13-9-r79

Bartlett, J. G., Onderdonk, A. B., Cisneros, R. L., et al. (1977). Clindamycin-associated colitis due to a toxin-producing species of Clostridium in hamsters. Journal of Infectious Diseases, 136(5), 701-705. https://doi.org/10.1093/infdis/136.5.701 DOI: https://doi.org/10.1093/infdis/136.5.701

Bartlett, J. G., Chang, T. W., Gurwith, M., et al. (1978). Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. New England Journal of Medicine, 298(9), 531-534. https://doi.org/10.1056/NEJM197803092981003 DOI: https://doi.org/10.1056/NEJM197803092981003

Weingarden, A. R., Chen, C., Bobr, A., et al. (2014). Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. American Journal of Physiology - Gastrointestinal and Liver Physiology, 306(3), G310-G319. https://doi.org/10.1152/ajpgi.00282.2013 DOI: https://doi.org/10.1152/ajpgi.00282.2013

Theriot, C. M., Bowman, A. A., & Young, V. B. (2016). Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. mSphere, 1(1), e00045-15. https://doi.org/10.1128/mSphere.00045-15 DOI: https://doi.org/10.1128/mSphere.00045-15

Wilson, K. H. (1983). Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination. Journal of Clinical Microbiology, 18(5), 1017-1019. https://doi.org/10.1128/JCM.18.5.1017-1019.1983 DOI: https://doi.org/10.1128/jcm.18.4.1017-1019.1983

Sorg, J. A., & Sonenshein, A. L. (2010). Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. Journal of Bacteriology, 192(19), 4983-4990. https://doi.org/10.1128/JB.00610-10 DOI: https://doi.org/10.1128/JB.00610-10

Rao, K., & Young, V. B. (2015). Fecal microbiota transplantation for the management of Clostridium difficile infection. Infectious Diseases Clinics of North America, 29(1), 109-122. https://doi.org/10.1016/j.idc.2014.11.009

Brandl, K., Plitas, G., Mihu, C. N., et al. (2008). Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature, 455(7209), 804-807. https://doi.org/10.1038/nature07250 DOI: https://doi.org/10.1038/nature07250

Ubeda, C., Taur, Y., Jenq, R. R., et al. (2010). Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. Journal of Clinical Investigation, 120(12), 4332-4341. https://doi.org/10.1172/JCI43918 DOI: https://doi.org/10.1172/JCI43918

Taur, Y., Xavier, J. B., Lipuma, L., et al. (2012). Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clinical Infectious Diseases, 55(7), 905-914. https://doi.org/10.1093/cid/cis580 DOI: https://doi.org/10.1093/cid/cis580

Dickson, R. P., Singer, B. H., Newstead, M. W., et al. (2016). Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. New Microbes and New Infections, 13, 161-169. https://doi.org/10.1038/nmicrobiol.2016.113 DOI: https://doi.org/10.1038/nmicrobiol.2016.113

Shogan, B. D., Smith, D. P., Christley, S., et al. (2014). Intestinal anastomotic injury alters spatially defined microbiome composition and function. Microbiome, 2(1), 35. https://doi.org/10.1186/2049-2618-2-35 DOI: https://doi.org/10.1186/2049-2618-2-35

Sartor, R. B. (2008). Microbial influences in inflammatory bowel diseases. Gastroenterology, 134(2), 577-594. https://doi.org/10.1053/j.gastro.2007.11.059 DOI: https://doi.org/10.1053/j.gastro.2007.11.059

Peterson, D. A., Frank, D. N., Pace, N. R., et al. (2008). Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host & Microbe, 3(5), 417-427. https://doi.org/10.1016/j.chom.2008.05.001 DOI: https://doi.org/10.1016/j.chom.2008.05.001

Li, E., Hamm, C. M., Gulati, A. S., et al. (2012). Inflammatory bowel diseases phenotype, C. difficile, and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS ONE, 7(11), e26284. https://doi.org/10.1371/journal.pone.0026284 DOI: https://doi.org/10.1371/journal.pone.0026284

Swidsinski, A., Weber, J., Loening-Baucke, V., et al. (2005). Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. Journal of Clinical Microbiology, 43(7), 3380-3389. https://doi.org/10.1128/JCM.43.7.3380-3389.2005 DOI: https://doi.org/10.1128/JCM.43.7.3380-3389.2005

Morgan, X. C., Kabakchiev, B., Waldron, L., et al. (2015). Associations between host gene expression, the mucosal microbiome, and clinical outcome in the pelvic pouch of patients with inflammatory bowel disease. Genome Biology, 16(1), 67. https://doi.org/10.1186/s13059-015-0637-x DOI: https://doi.org/10.1186/s13059-015-0637-x

Huttenhower, C., Kostic, A. D., & Xavier, R. J. (2014). Inflammatory bowel disease as a model for translating the microbiome. Immunity, 40(6), 843-854. https://doi.org/10.1016/j.immuni.2014.05.013 DOI: https://doi.org/10.1016/j.immuni.2014.05.013

Gkoskou, K. K., Deligianni, C., Tsatsanis, C., et al. (2014). The gut microbiota in mouse models of inflammatory bowel disease. Frontiers in Cellular and Infection Microbiology, 4, 28. https://doi.org/10.3389/fcimb.2014.00028 DOI: https://doi.org/10.3389/fcimb.2014.00028

Wirtz, S., & Neurath, M. F. (2007). Mouse models of inflammatory bowel disease. Advanced Drug Delivery Reviews, 59(11), 1073-1083. https://doi.org/10.1016/j.addr.2007.07.003 DOI: https://doi.org/10.1016/j.addr.2007.07.003

Ogura, Y., Bonen, D. K., Inohara, N., et al. (2001). A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature, 411(6837), 603-606. https://doi.org/10.1038/35079114 DOI: https://doi.org/10.1038/35079114

Hugot, J. P., Chamaillard, M., Zouali, H., et al. (2001). Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature, 411(6837), 599-603. https://doi.org/10.1038/35079107 DOI: https://doi.org/10.1038/35079107

Ley, R. E., Turnbaugh, P. J., Klein, S., et al. (2006). Microbial ecology: Human gut microbes associated with obesity. Nature, 444(7122), 1022-1023. https://doi.org/10.1038/4441022a DOI: https://doi.org/10.1038/4441022a

Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., et al. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027-1031. https://doi.org/10.1038/nature05414 DOI: https://doi.org/10.1038/nature05414

Rajala, M. W., Patterson, C. M., Opp, J. S., et al. (2014). Leptin acts independently of food intake to modulate gut microbial composition in male mice. Endocrinology, 155(2), 748-757. https://doi.org/10.1210/en.2013-1085 DOI: https://doi.org/10.1210/en.2013-1085

Turnbaugh, P. J., Hamady, M., Yatsunenko, T., et al. (2009). A core gut microbiome in obese and lean twins. Nature, 457(7228), 480-484. https://doi.org/10.1038/nature07540 DOI: https://doi.org/10.1038/nature07540

Jumpertz, R., Le, D. S., Turnbaugh, P. J., et al. (2011). Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. American Journal of Clinical Nutrition, 94(1), 58-65. https://doi.org/10.3945/ajcn.110.010132 DOI: https://doi.org/10.3945/ajcn.110.010132

Sze, M. A., & Schloss, P. D. (2016). Looking for a signal in the noise: Revisiting obesity and the microbiome. mBio, 7(3), e01018-16. https://doi.org/10.1128/mBio.01018-16 DOI: https://doi.org/10.1128/mBio.01018-16

Greiner, T. U., & Bäckhed, F. (2016). Microbial regulation of GLP-1 and L-cell biology. Molecular Metabolism, 5(8), 753-758. https://doi.org/10.1016/j.molmet.2016.05.012 DOI: https://doi.org/10.1016/j.molmet.2016.05.012

Trabelsi, M. S., Daoudi, M., Prawitt, J., et al. (2015). Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nature Communications, 6, 7629. https://doi.org/10.1038/ncomms8629 DOI: https://doi.org/10.1038/ncomms8629

Parseus, A., Sommer, N., Sommer, F., et al. (2016). Microbiota-induced obesity requires farnesoid X receptor. Gut. https://doi.org/10.1136/gutjnl-2016-312504 (Note: Complete publication details needed) DOI: https://doi.org/10.1136/gutjnl-2015-310283

Ussar, S., Griffin, N. W., Bezy, O., et al. (2015). Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metabolism, 22(3), 516-530. https://doi.org/10.1016/j.cmet.2015.07.007 DOI: https://doi.org/10.1016/j.cmet.2015.07.007

Cho, I., Yamanishi, S., Cox, L. M., et al. (2012). Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature, 488(7409), 621-626. https://doi.org/10.1038/nature11400 DOI: https://doi.org/10.1038/nature11400

Livanos, A. E., Greiner, T. U., Vangay, P., et al. (2016). Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. New Microbes and New Infections, 13, 161-170. https://doi.org/10.1038/nmicrobiol.2016.140 DOI: https://doi.org/10.1038/nmicrobiol.2016.140

Wang, Z., Klipfell, E., Bennett, B. J., et al. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472(7341), 57-63. https://doi.org/10.1038/nature09922 DOI: https://doi.org/10.1038/nature09922

Bassis, C. M., Erb-Downward, J. R., Dickson, R. P., et al. (2015). Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio, 6(1), e00037-15. https://doi.org/10.1128/mBio.00037-15 DOI: https://doi.org/10.1128/mBio.00037-15

Venkataraman, A., Bassis, C. M., Beck, J. M., et al. (2015). Application of a neutral community model to assess structuring of the human lung microbiome. mBio, 6(1), e02284-14. https://doi.org/10.1128/mBio.02284-14 DOI: https://doi.org/10.1128/mBio.02284-14

Charlson, E. S., Bittinger, K., Haas, A. R., et al. (2011). Topographical continuity of bacterial populations in the healthy human respiratory tract. American Journal of Respiratory and Critical Care Medicine, 184(9), 957-963. https://doi.org/10.1164/rccm.201104-0655OC DOI: https://doi.org/10.1164/rccm.201104-0655OC

Segal, L. N., Clemente, J. C., Tsay, J. C., et al. (2016). Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. New Microbes and New Infections, 13, 16031. https://doi.org/10.1038/nmicrobiol.2016.31 DOI: https://doi.org/10.1038/nmicrobiol.2016.31

Huang, Y. J., & LiPuma, J. J. (2016). The microbiome in cystic fibrosis. Clinical Chest Medicine, 37(1), 59-67. https://doi.org/10.1016/j.ccm.2015.10.003 DOI: https://doi.org/10.1016/j.ccm.2015.10.003

Carmody, L. A., Zhao, J., Schloss, P. D., et al. (2013). Changes in cystic fibrosis airway microbiota at pulmonary exacerbation. Annals of the American Thoracic Society, 10(2), 179-187. https://doi.org/10.1513/AnnalsATS.201211-107OC DOI: https://doi.org/10.1513/AnnalsATS.201211-107OC

Zhao, J., Schloss, P. D., Kalikin, L. M., et al. (2012). Decade-long bacterial community dynamics in cystic fibrosis airways. Proceedings of the National Academy of Sciences USA, 109(5), 5809-5814. https://doi.org/10.1073/pnas.1120577109 DOI: https://doi.org/10.1073/pnas.1120577109

Flynn, J. M., Niccum, D., Dunitz, J. M., et al. (2016). Evidence and role for bacterial mucin degradation in cystic fibrosis airway disease. PLoS Pathogens, 12(6), e1005846. https://doi.org/10.1371/journal.ppat.1005846 DOI: https://doi.org/10.1371/journal.ppat.1005846

Huang, Y. J., Erb-Downward, J. R., Dickson, R. P., et al. (2017). Understanding the role of the microbiome in chronic obstructive pulmonary disease: Principles, challenges, and future directions. Translational Research, 179, 71-83. https://doi.org/10.1016/j.trsl.2016.06.007 DOI: https://doi.org/10.1016/j.trsl.2016.06.007

Sze, M. A., & Morris, A. (2016). Launching into the deep: Does the pulmonary microbiota promote chronic lung inflammation and chronic obstructive pulmonary disease pathogenesis? American Journal of Respiratory and Critical Care Medicine, 193(8), 938-940. https://doi.org/10.1164/rccm.201512-2329ED DOI: https://doi.org/10.1164/rccm.201512-2329ED

Huang, Y. J., Nariya, S., Harris, J. M., et al. (2015). The airway microbiome in patients with severe asthma: Associations with disease features and severity. Journal of Allergy and Clinical Immunology, 136(4), 874-884. https://doi.org/10.1016/j.jaci.2015.05.044 DOI: https://doi.org/10.1016/j.jaci.2015.05.044

Huang, Y. J., & Boushey, H. A. (2015). The sputum microbiome in chronic obstructive pulmonary disease exacerbations. Annals of the American Thoracic Society, 12(Suppl 2), S176-S180. https://doi.org/10.1513/AnnalsATS.201506-319AW DOI: https://doi.org/10.1513/AnnalsATS.201506-319AW

Yadava, K., Pattaroni, C., Sichelstiel, A. K., et al. (2016). Microbiota promotes chronic pulmonary inflammation by enhancing IL-17A and autoantibodies. American Journal of Respiratory and Critical Care Medicine, 193(9), 975-987. https://doi.org/10.1164/rccm.201504-0779OC DOI: https://doi.org/10.1164/rccm.201504-0779OC

Anderson, M., Stokken, J., Sanford, T., et al. (2016). A systematic review of the sinonasal microbiome in chronic rhinosinusitis. American Journal of Rhinology & Allergy, 30(2), 161-166. https://doi.org/10.2500/ajra.2016.30.4320 DOI: https://doi.org/10.2500/ajra.2016.30.4320

Abreu, N. A., Nagalingam, N. A., Song, Y., et al. (2012). Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis. Science Translational Medicine, 4(151), 151ra24. https://doi.org/10.1126/scitranslmed.3003783 DOI: https://doi.org/10.1126/scitranslmed.3003783

Cope, E. K., Goldberg, A. N., Pletcher, S. D., et al. (2016). A chronic rhinosinusitis-derived isolate of Pseudomonas aeruginosa induces acute and pervasive effects on the murine upper airway microbiome and host immune response. International Forum of Allergy & Rhinology, 6(12), 1229-1237. https://doi.org/10.1002/alr.21819 DOI: https://doi.org/10.1002/alr.21819

Schenck, L. P., Surette, M. G., & Bowdish, D. M. (2016). Composition and immunological significance of the upper respiratory tract microbiota. FEBS Letters, 590(22), 3705-3720. https://doi.org/10.1002/1873-3468.12455 DOI: https://doi.org/10.1002/1873-3468.12455

Hofstra, J. J., Matamoros, S., van de Pol, M. A., et al. (2015). Changes in microbiota during experimental human rhinovirus infection. BMC Infectious Diseases, 15, 336. https://doi.org/10.1186/s12879-015-1081-y DOI: https://doi.org/10.1186/s12879-015-1081-y

Bajaj, J. S. (2016). Review article: Potential mechanisms of action of rifaximin in the management of hepatic encephalopathy and other complications of cirrhosis. Alimentary Pharmacology & Therapeutics, 43(Suppl 1), 11-26. https://doi.org/10.1111/apt.13435 DOI: https://doi.org/10.1111/apt.13435

Li, J., Zhu, W., Liu, W., et al. (2016). Rifaximin for irritable bowel syndrome: A meta-analysis of randomized placebo-controlled trials. Medicine (Baltimore), 95(47), e2534. https://doi.org/10.1097/MD.0000000000002534 DOI: https://doi.org/10.1097/MD.0000000000002534

Perencevich, E. N., & Burakoff, R. (2006). Use of antibiotics in the treatment of inflammatory bowel disease. Inflammatory Bowel Diseases, 12(7), 651-664. https://doi.org/10.1097/01.MIB.0000225330.38119.c7 DOI: https://doi.org/10.1097/01.MIB.0000225330.38119.c7

Louie, T. J., Miller, M. A., Mullane, K. M., et al. (2011). Fidaxomicin versus vancomycin for Clostridium difficile infection. New England Journal of Medicine, 364(5), 422-431. https://doi.org/10.1056/NEJMoa0910812 DOI: https://doi.org/10.1056/NEJMoa0910812

Langdon, A., Crook, N., & Dantas, G. (2016). The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Medicine, 8(1), 39. https://doi.org/10.1186/s13073-016-0294-z DOI: https://doi.org/10.1186/s13073-016-0294-z

Pettigrew, M. M., Johnson, J. K., & Harris, A. D. (2016). The human microbiota: Novel targets for hospital-acquired infections and antibiotic resistance. Annals of Epidemiology, 26(5), 342-347. https://doi.org/10.1016/j.annepidem.2016.02.007 DOI: https://doi.org/10.1016/j.annepidem.2016.02.007

Nobrega, F. L., Costa, A. R., Kluskens, L. D., et al. (2015). Revisiting phage therapy: New applications for old resources. Trends in Microbiology, 23(4), 185-191. https://doi.org/10.1016/j.tim.2015.01.006 DOI: https://doi.org/10.1016/j.tim.2015.01.006

Orndorff, P. E. (2016). Use of bacteriophage to target bacterial surface structures required for virulence: A systematic search for antibiotic alternatives. Current Genetics, 62(6), 753-757. https://doi.org/10.1007/s00294-016-0603-5 DOI: https://doi.org/10.1007/s00294-016-0603-5

Vandenheuvel, D., Lavigne, R., & Brussow, H. (2015). Bacteriophage therapy: Advances in formulation strategies and human clinical trials. Annual Review of Virology, 2, 599-618. https://doi.org/10.1146/annurev-virology-100114-054915 DOI: https://doi.org/10.1146/annurev-virology-100114-054915

Reid, G. (2016). Probiotics: Definition, scope and mechanisms of action. Best Practice & Research Clinical Gastroenterology, 30(1), 17-25. https://doi.org/10.1016/j.bpg.2015.12.001 DOI: https://doi.org/10.1016/j.bpg.2015.12.001

Kaufmann, S. H. (2008). Elie Metchnikoff’s and Paul Ehrlich’s impact on infection biology. Microbes and Infection, 10(15), 1417-1419. https://doi.org/10.1016/j.micinf.2008.08.012 DOI: https://doi.org/10.1016/j.micinf.2008.08.012

Sanders, M. E. (2008). Probiotics: Definition, sources, selection, and uses. Clinical Infectious Diseases, 46(Suppl 2), S58-S61. https://doi.org/10.1086/523341 DOI: https://doi.org/10.1086/523341

Goldenberg, J. Z., Lytvyn, L., Steurich, J., et al. (2015). Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database of Systematic Reviews, 12, CD004827. https://doi.org/10.1002/14651858.CD004827.pub4 DOI: https://doi.org/10.1002/14651858.CD004827.pub4

Schnadower, D., Finkelstein, Y., & Freedman, S. B. (2015). Ondansetron and probiotics in the management of pediatric acute gastroenteritis in developed countries. Current Opinion in Gastroenterology, 31(1), 1-6. https://doi.org/10.1097/MOG.0000000000000132 DOI: https://doi.org/10.1097/MOG.0000000000000132

Ollech, J. E., Shen, N. T., Crawford, C. V., et al. (2016). Use of probiotics in prevention and treatment of patients with Clostridium difficile infection. Best Practice & Research Clinical Gastroenterology, 30(1), 111-118. https://doi.org/10.1016/j.bpg.2016.01.002 DOI: https://doi.org/10.1016/j.bpg.2016.01.002

Allen, S. J., Wareham, K., Wang, D., et al. (2013). Lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhea and Clostridium difficile diarrhea in older inpatients (PLACIDE): A randomized, double-blind, placebo-controlled, multicenter trial. The Lancet, 382(9890), 1249-1257. https://doi.org/10.1016/S0140-6736(13)61218-0 DOI: https://doi.org/10.1016/S0140-6736(13)61218-0

Howerton, A., Patra, M., & Abel-Santos, E. (2013). A new strategy for the prevention of Clostridium difficile infections. Journal of Infectious Diseases, 207(10), 1498-1504. https://doi.org/10.1093/infdis/jit068 DOI: https://doi.org/10.1093/infdis/jit068

Koropatkin, N. M., Cameron, E. A., & Martens, E. C. (2012). How glycan metabolism shapes the human gut microbiota. Nature Reviews Microbiology, 10(5), 323-335. https://doi.org/10.1038/nrmicro2746 DOI: https://doi.org/10.1038/nrmicro2746

Louis, P., Flint, H. J., & Michel, C. (2016). How to manipulate the microbiota: Prebiotics. Advances in Experimental Medicine and Biology, 902, 119-142. https://doi.org/10.1007/978-3-319-31248-4_9 DOI: https://doi.org/10.1007/978-3-319-31248-4_9

Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. Journal of Nutrition, 125(6), 1401-1412. DOI: https://doi.org/10.1093/jn/125.6.1401

Quince, C., Ijaz, U. Z., Loman, N., et al. (2015). Extensive modulation of the fecal metagenome in children with Crohn’s disease during exclusive enteral nutrition. American Journal of Gastroenterology, 110(12), 1718-1729. https://doi.org/10.1038/ajg.2015.357 DOI: https://doi.org/10.1038/ajg.2015.357

Lee, D., Baldassano, R. N., Otley, A. R., et al. (2015). Comparative effectiveness of nutritional and biological therapy in North American children with active Crohn’s disease. Inflammatory Bowel Diseases, 21(8), 1786-1793. https://doi.org/10.1097/MIB.0000000000000426 DOI: https://doi.org/10.1097/MIB.0000000000000426

Fuentes, S., & de Vos, W. M. (2016). How to manipulate the microbiota: Fecal microbiota transplantation. Advances in Experimental Medicine and Biology, 902, 143-153. https://doi.org/10.1007/978-3-319-31248-4_10 DOI: https://doi.org/10.1007/978-3-319-31248-4_10

Brandt, L. J. (2015). Fecal microbiota transplant: Respice, adspice, prospice. Journal of Clinical Gastroenterology, 49(Suppl 1), S65-S68. https://doi.org/10.1097/MCG.0000000000000346 DOI: https://doi.org/10.1097/MCG.0000000000000346

Rao, K., & Young, V. B. (2015). Fecal microbiota transplantation for the management of Clostridium difficile infection. Infectious Diseases Clinics of North America, 29(1), 109-122. https://doi.org/10.1016/j.idc.2014.11.009 DOI: https://doi.org/10.1016/j.idc.2014.11.009

Zhang, F., Luo, W., Shi, Y., et al. (2012). Should we standardize the 1,700-year-old fecal microbiota transplantation? The American Journal of Gastroenterology, 107(11), 1755. https://doi.org/10.1038/ajg.2012.251 DOI: https://doi.org/10.1038/ajg.2012.251

Rao, K., & Safdar, N. (2016). Fecal microbiota transplantation for the treatment of Clostridium difficile infection. Journal of Hospital Medicine, 11(1), 56-61. https://doi.org/10.1002/jhm.2449 DOI: https://doi.org/10.1002/jhm.2449

Eiseman, B., Silen, W., Bascom, G. S., et al. (1958). Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery, 44(6), 854-859.

Khanna, S., Pardi, D. S., Kelly, C. R., et al. (2016). A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent Clostridium difficile infection. Journal of Infectious Diseases, 214(2), 173-181. https://doi.org/10.1093/infdis/jiv766 DOI: https://doi.org/10.1093/infdis/jiv766

Youngster, I., Russell, G. H., Pindar, C., et al. (2014). Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA, 312(17), 1772-1778. https://doi.org/10.1001/jama.2014.13875 DOI: https://doi.org/10.1001/jama.2014.13875

Orenstein, R., Dubberke, E., Hardi, R., et al. (2016). Safety and durability of RBX2660 (microbiota suspension) for recurrent Clostridium difficile infection: Results of the PUNCH CD study. Clinical Infectious Diseases, 62(5), 596-602. https://doi.org/10.1093/cid/civ938 DOI: https://doi.org/10.1093/cid/civ938

Furuya-Kanamori, L., Doi, S. A., Paterson, D. L., et al. (2016). Upper versus lower gastrointestinal delivery for transplantation of fecal microbiota in recurrent or refractory Clostridium difficile infection: A collaborative analysis of individual patient data from 14 studies. Journal of Clinical Gastroenterology. https://doi.org/10.1097/MCG.0000000000000511 DOI: https://doi.org/10.1097/MCG.0000000000000511

Kelly, C. R., Khoruts, A., Staley, C., et al. (2016). Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection: A randomized trials. Annals of Internal Medicine, 165(9), 609-616. https://doi.org/10.7326/M16-0271 DOI: https://doi.org/10.7326/M16-0271

Scaldaferri, F., Pecere, S., Petito, V., et al. (2016). Efficacy and mechanisms of action of fecal microbiota transplantation in ulcerative colitis: Pitfalls and promises from a first meta-analysis. Transplantation Proceedings, 48(1), 402-407. https://doi.org/10.1016/j.transproceed.2015.12.040 DOI: https://doi.org/10.1016/j.transproceed.2015.12.040

Kahn, S. A., & Rubin, D. T. (2016). When subjects violate the research covenant: Lessons learned from a failed clinical trial of fecal microbiota transplantation. American Journal of Gastroenterology, 111(10), 1508-1510. https://doi.org/10.1038/ajg.2016.153 DOI: https://doi.org/10.1038/ajg.2016.153

Young, V. B. (2016). Therapeutic manipulation of the microbiota: Past, present and considerations for the future. Clinical Microbiology and Infection, 22(10), 905-909. https://doi.org/10.1016/j.cmi.2016.09.001 DOI: https://doi.org/10.1016/j.cmi.2016.09.001

Published

15-01-2018

How to Cite

Alotaibi, F. M., Almazam, A. A., Alenizi, S. Z., Alanazi, ‏Maryam H., Lamfon, ‏Nahid A., Albalawi, A. E. A., Al-Nasser, N. S., & Altheyab, S. A. (2018). Exploring the human microbiome: Its role and impact on overall health and disease prevention. International Journal of Health Sciences, 2(S1), 129–153. https://doi.org/10.53730/ijhs.v2nS1.15085

Issue

Section

Peer Review Articles

Most read articles by the same author(s)