Exploring the future of surgical practices

Advances in minimally invasive techniques and the integration of robotic technology

https://doi.org/10.53730/ijhs.v7nS1.15090

Authors

  • Fahdah Mehsan Alotaibi KSA, National Guard Health Affairs
  • ‏Motaeb Alotaibi KSA, National Guard Health Affairs
  • ‏Arwa Mohammad Emam KSA, National Guard Health Affairs
  • ‏Naif Saad Alqahtani KSA, National Guard Health Affairs
  • ‏Ashwaq Ibrahim Alheggi KSA, National Guard Health Affairs
  • ‏Khlood Khaldan Alharbi KSA, National Guard Health Affairs
  • ‏Muteb Abdullah Aldosari KSA, National Guard Health Affairs
  • ‏Afnan Sulaiman Alenizy KSA, National Guard Health Affairs
  • ‏Rawan Mohammed Alarfaj KSA, National Guard Health Affairs
  • ‏Ohud Hadyan Albaqami KSA, National Guard Health Affairs
  • ‏Zaid Helal Alanazi KSA, National Guard Health Affairs
  • ‏Mahfoudh Saad Alghamdi KSA, National Guard Health Affairs
  • ‏Jawaher Sahud Alnefaie KSA, National Guard Health Affairs
  • ‏Sultana Suliman Almutairi KSA, National Guard Health Affairs
  • ‏Abdulaziz Shaem Alsharari KSA, National Guard Health Affairs
  • ‏Sami Farhan Alsharari KSA, National Guard Health Affairs
  • ‏Abdulkhareem Gathen Al Shammary KSA, National Guard Health Affairs
  • Nasser Hamoud Mohammed Alharbi Ministry of National Guard Health Affairs

Keywords:

Robotic-Assisted Minimally Invasive Surgery, RAMIS, da Vinci surgical system, Artificial Intelligence, surgical robotics, autonomy, haptic feedback

Abstract

Background: Robotic-Assisted Minimally Invasive Surgery (RAMIS) represents a significant advancement in surgical techniques, leveraging robotic systems to enhance precision, reduce invasiveness, and improve patient outcomes. The da Vinci surgical system has been a leading example, demonstrating the potential of robotic assistance in minimally invasive procedures. Aim: This paper explores the evolution of RAMIS, focusing on technological advancements, integration with Artificial Intelligence (AI), and future directions in surgical robotics. Methods: The study reviews the development and current state of RAMIS technologies, including the historical background, state-of-the-art systems, and emerging innovations. It analyzes data from a range of sources including literature reviews, market reports, and recent research developments. Results: RAMIS systems, particularly the da Vinci surgical system, have achieved widespread adoption due to their advanced features, such as enhanced vision, improved ergonomics, and training programs. Recent advancements include AI integration, new sensor technologies, and enhanced imaging modalities. Despite these improvements, challenges remain in achieving higher levels of autonomy and addressing cost and regulatory issues. Conclusion: RAMIS continues to evolve with significant advancements in AI, haptic feedback, and simulation technologies. Future developments are expected to further enhance surgical precision and outcomes. 

Downloads

Download data is not yet available.

References

R. H. Taylor, A. Menciassi, G. Fichtinger, P. Fiorini and P. Dario, "Medical robotics and computer-integrated surgery" in Springer Handbook of Robotics, Springer, pp. 1657-1684, 2016. DOI: https://doi.org/10.1007/978-3-319-32552-1_63

M. Azizian, M. Liu, I. Khalaji and S. DiMaio, "The da Vinci surgical system" in The Encyclopedia of Medical Robotics: Minimally Invasive Surgical Robotics, vol. 1, pp. 3-28, 2019. DOI: https://doi.org/10.1142/9789813232266_0001

V. R. Patel, "Essential elements to the establishment and design of a successful robotic surgery programme", Int. J. Med. Robot. Comput. Assist. Surgery, vol. 2, no. 1, pp. 28-35, Mar. 2006. DOI: https://doi.org/10.1002/rcs.77

P. Nicolai, J. Raczkowsky and H. Wörn, "A novel 3D camera based supervision system for safe human-robot interaction in the operating room", J. Autom. Control Eng., vol. 3, no. 5, pp. 410-417, 2015. DOI: https://doi.org/10.12720/joace.3.5.410-417

P. T. Ramirez et al., "Minimally invasive versus abdominal radical hysterectomy for cervical cancer", New England J. Med., vol. 379, no. 20, pp. 1895-1904, 2018. DOI: https://doi.org/10.1056/NEJMoa1806395

S. DiMaio, M. Hanuschik and U. Kreaden, "The da Vinci surgical system" in Surgical Robotics, Boston, MA, USA:Springer, pp. 199-217, 2011. DOI: https://doi.org/10.1007/978-1-4419-1126-1_9

J. Rose, T. G. Weiser, P. Hider, L. Wilson, R. L. Gruen and S. W. Bickler, "Estimated need for surgery worldwide based on prevalence of diseases: A modelling strategy for the WHO global health estimate", Lancet Global Health, vol. 3, pp. S13-S20, Apr. 2015. DOI: https://doi.org/10.1016/S2214-109X(15)70087-2

Global Offering, 2021, [online] Available: https://ir.medbotsurgical.com/media/u0rpu1km/2021102100011.pdf.

P. Kazanzides, G. Fichtinger, G. D. Hager, A. M. Okamura, L. L. Whitcomb and R. H. Taylor, "Surgical and interventional robotics–core concepts technology and design [tutorial]", IEEE Robot. Autom. Mag., vol. 15, no. 2, pp. 122-130, Jun. 2008. DOI: https://doi.org/10.1109/MRA.2008.926390

G. Fichtinger, J. Troccaz and T. Haidegger, "Image-guided interventional robotics: Lost in translation", Proc. IEEE, vol. 110, no. 5, pp. 1-18, May 2022.

P. Dupont, N. Simaan, H. Choset and C. Rucker, "Continuum robots for medical interventions", Proc. IEEE, Feb. 2022. DOI: https://doi.org/10.1109/JPROC.2022.3141338

T. Haidegger, "Taxonomy and standards in robotics" in Encyclopedia of Robotics, Berlin, Germany:Springer, pp. 1-10, 2021. DOI: https://doi.org/10.1007/978-3-642-41610-1_190-1

R. M. Satava, "Surgical robotics: The early chronicles: A personal historical perspective", Surgical Laparoscopy Endoscopy Percutaneous Techn., vol. 12, no. 1, pp. 6-16, Feb. 2002. DOI: https://doi.org/10.1097/00129689-200202000-00002

Takács, D. A. Nagy, I. Rudas and T. Haidegger, "Origins of surgical robotics: From space to the operating room", Acta Polytechnica Hungarica, vol. 13, no. 1, pp. 13-30, 2016. DOI: https://doi.org/10.12700/APH.13.1.2016.1.3

T. B. Sheridan, Telerobotics Automation and Human Supervisory Control, Cambridge, MA, USA:MIT Press, 1992.

T. Ginoya, Y. Maddahi and K. Zareinia, "A historical review of medical robotic platforms", J. Robot., vol. 2021, pp. 1-13, Jan. 2021. DOI: https://doi.org/10.1155/2021/6640031

M. Hoeckelmann, I. J. Rudas, P. Fiorini, F. Kirchner and T. Haidegger, "Current capabilities and development potential in surgical robotics", Int. J. Adv. Robotic Syst., vol. 12, no. 5, pp. 61, May 2015. DOI: https://doi.org/10.5772/60133

D. S. Schoeb et al., "Robotik und intraoperative navigation", Der Urologe, vol. 60, no. 1, pp. 27-38, Jan. 2021. DOI: https://doi.org/10.1007/s00120-020-01405-4

Race and S. Horgan, "Overview of current robotic technology" in Innovative Endoscopic and Surgical Technology in the GI Tract, Cham, Switzerland:Springer, pp. 1-17, 2021. DOI: https://doi.org/10.1007/978-3-030-78217-7_1

J. Klodmann et al., "An introduction to robotically assisted surgical systems: Current developments and focus areas of research", Current Robot. Rep., vol. 2, no. 3, pp. 321-332, Sep. 2021. DOI: https://doi.org/10.1007/s43154-021-00064-3

B. Millan, S. Nagpal, M. Ding, J. Y. Lee and A. Kapoor, "A scoping review of emerging and established surgical robotic platforms with applications in urologic surgery", Société Internationale d’Urologie J., no. 5, pp. 300-310, Sep. 2021. DOI: https://doi.org/10.48083/EWWQ2677

Moglia, K. Georgiou, E. Georgiou, R. M. Satava and A. Cuschieri, "A systematic review on artificial intelligence in robot-assisted surgery", Int. J. Surg., vol. 95, Nov. 2021. DOI: https://doi.org/10.1016/j.ijsu.2021.106151

P. E. Dupont et al., "A decade retrospective of medical robotics research from 2010 to 2020", Sci. Robot., vol. 6, no. 60, Nov. 2021. DOI: https://doi.org/10.1126/scirobotics.abi8017

P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor and S. P. DiMaio, "An open-source research kit for the da Vinci surgical system", Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 6434-6439, May 2014. DOI: https://doi.org/10.1109/ICRA.2014.6907809

G. Chrysilla, N. Eusman, A. Deguet and P. Kazanzides, "A compliance model to improve the accuracy of the da Vinci research kit (dVRK)", Acta Polytechnica Hungarica, vol. 16, no. 8, pp. 49-60, 2019. DOI: https://doi.org/10.12700/APH.16.8.2019.8.4

C. D’Ettorre et al., "Accelerating surgical robotics research: A review of 10 years with the da Vinci research kit", IEEE Robot. Autom. Mag., vol. 28, no. 4, pp. 56-78, Dec. 2021. DOI: https://doi.org/10.1109/MRA.2021.3101646

T. E. T. Seah, T. N. Do, N. Takeshita, K. Y. Ho and S. J. Phee, "Flexible robotic endoscopy systems and the future ahead" in Diagnostic Therapeutic Procedures Gastroenterology, Cham, Switzerland:Humana Press, pp. 521-536, 2018. DOI: https://doi.org/10.1007/978-3-319-62993-3_41

L. Maier-Hein et al., "Surgical data science—From concepts toward clinical translation", Med. Image Anal., vol. 76, Feb. 2022.

L. Maier-Hein et al., "Surgical data science for next-generation interventions", Nature Biomed. Eng., vol. 1, no. 9, pp. 691-696, Sep. 2017. DOI: https://doi.org/10.1038/s41551-017-0132-7

T. Vercauteren, M. Unberath, N. Padoy and N. Navab, "CAI4CAI: The rise of contextual artificial intelligence in computer-assisted interventions", Proc. IEEE, vol. 108, no. 1, pp. 198-214, Jan. 2020. DOI: https://doi.org/10.1109/JPROC.2019.2946993

E. Battaglia, J. Boehm, Y. Zheng, A. R. Jamieson, J. Gahan and A. Majewicz Fey, "Rethinking autonomous surgery: Focusing on enhancement over autonomy", Eur. Urol. Focus, vol. 7, no. 4, pp. 696-705, Jul. 2021. DOI: https://doi.org/10.1016/j.euf.2021.06.009

Shademan, R. S. Decker, J. D. Opfermann, S. Leonard, A. Krieger and P. C. W. Kim, "Supervised autonomous robotic soft tissue surgery", Sci. Transl. Med., vol. 8, no. 337, May 2016. DOI: https://doi.org/10.1126/scitranslmed.aad9398

G.-Z. Yang et al., "The grand challenges of science robotics", Sci. Robot., vol. 3, no. 14, Jan. 2018. DOI: https://doi.org/10.1126/scirobotics.aas9540

D. B. Kaber and M. R. Endsley, "The effects of level of automation and adaptive automation on human performance situation awareness and workload in a dynamic control task", Theor. Issues Ergonom. Sci., vol. 5, no. 2, pp. 113-153, Mar. 2004. DOI: https://doi.org/10.1080/1463922021000054335

G. Fichtinger, J. Troccaz and T. Haidegger, "Image-guided interventional robotics: Lost in translation", Proc. IEEE, vol. 110, no. 5, pp. 1-18, May 2022. DOI: https://doi.org/10.1109/JPROC.2022.3166253

T. Haidegger, "Autonomy for surgical robots: Concepts and paradigms", IEEE Trans. Med. Robot. Bionics, vol. 1, no. 2, pp. 65-76, May 2019. DOI: https://doi.org/10.1109/TMRB.2019.2913282

T. D. Nagy and T. Haidegger, "A dVRK-based framework for surgical subtask automation", Acta Polytechnica Hungarica, vol. 16, no. 8, pp. 61-78, 2019. DOI: https://doi.org/10.12700/APH.16.8.2019.8.5

T. D. Nagy and T. P. Haidegger, "Towards standard approaches for the evaluation of autonomous surgical subtask execution", Proc. IEEE 25th Int. Conf. Intell. Eng. Syst. (INES), pp. 67-74, Jul. 2021. DOI: https://doi.org/10.1109/INES52918.2021.9512901

H. Suzuki and R. J. Wood, "Origami-inspired miniature manipulator for teleoperated microsurgery", Nature Mach. Intell., vol. 2, no. 8, pp. 437-446, Aug. 2020. DOI: https://doi.org/10.1038/s42256-020-0203-4

L. B. Valdez, R. R. Datta, B. Babic, D. T. Müller, C. J. Bruns and H. F. Fuchs, "5G mobile communication applications for surgery: An overview of the latest literature", Artif. Intell. Gastrointestinal Endoscopy, vol. 2, no. 1, pp. 1-11, Mar. 2021. DOI: https://doi.org/10.37126/aige.v2.i1.1

Q. Zhang, J. Liu and G. Zhao, "Towards 5G enabled tactile robotic telesurgery", arXiv:1803.03586, 2018.

T. Haidegger, J. Sándor and Z. Benyó, "Surgery in space: The future of robotic telesurgery", Surgical Endoscopy, vol. 25, no. 3, pp. 681-690, Mar. 2011. DOI: https://doi.org/10.1007/s00464-010-1243-3

R. Gupta, A. Shukla and S. Tanwar, "BATS: A blockchain and AI-empowered drone-assisted telesurgery system towards 6G", IEEE Trans. Netw. Sci. Eng., vol. 8, no. 4, pp. 2958-2967, Dec. 2021. DOI: https://doi.org/10.1109/TNSE.2020.3043262

M. Giordani, M. Polese, M. Mezzavilla, S. Rangan and M. Zorzi, "Toward 6G networks: Use cases and technologies", IEEE Commun. Mag., vol. 58, no. 3, pp. 55-61, Mar. 2020. DOI: https://doi.org/10.1109/MCOM.001.1900411

G. Lacava et al., "Cybsersecurity issues in robotics", J. Wireless Mobile Netw. Ubiquitous Comput. Dependable Appl., vol. 12, no. 3, pp. 1-28, Sep. 2021.

H. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sjoland and F. Tufvesson, "6G wireless systems: Vision requirements challenges insights and opportunities", Proc. IEEE, vol. 109, no. 7, pp. 1166-1199, Jul. 2021. DOI: https://doi.org/10.1109/JPROC.2021.3061701

H. S. Lallie et al., "Cyber security in the age of COVID-19: A timeline and analysis of cyber-crime and cyber-attacks during the pandemic", Comput. Secur., vol. 105, Jun. 2021. DOI: https://doi.org/10.1016/j.cose.2021.102248

J.-P.-A. Yaacoub, H. N. Noura, O. Salman and A. Chehab, "Robotics cyber security: Vulnerabilities attacks countermeasures and recommendations", Int. J. Inf. Secur., vol. 21, no. 1, pp. 115-158, Feb. 2022. DOI: https://doi.org/10.1007/s10207-021-00545-8

T. P. Singh, J. Zaman and J. Cutler, "Robotic surgery: At the crossroads of a data explosion", World J. Surg., vol. 45, no. 12, pp. 3484-3492, Dec. 2021. DOI: https://doi.org/10.1007/s00268-021-06321-y

E. D. Momi, L. Kranendonk, M. Valenti, N. Enayati and G. Ferrigno, "A neural network-based approach for trajectory planning in robot–human handover tasks", Frontiers Robot. AI, vol. 3, pp. 34, Jun. 2016. DOI: https://doi.org/10.3389/frobt.2016.00034

M. Wagner et al., "A learning robot for cognitive camera control in minimally invasive surgery", Surgical Endoscopy, vol. 35, no. 9, pp. 5365-5374, Apr. 2021. DOI: https://doi.org/10.1007/s00464-021-08509-8

N. Padoy, T. Blum, S.-A. Ahmadi, H. Feussner, M.-O. Berger and N. Navab, "Statistical modeling and recognition of surgical workflow", Med. Image Anal., vol. 16, no. 3, pp. 632-641, 2012. DOI: https://doi.org/10.1016/j.media.2010.10.001

D. Katić et al., "Context-aware augmented reality in laparoscopic surgery", Computerized Med. Imag. Graph., vol. 37, no. 2, pp. 174-182, Mar. 2013. DOI: https://doi.org/10.1016/j.compmedimag.2013.03.003

D. Rivoir et al., "Long-term temporally consistent unpaired video translation from simulated surgical 3D data", Proc. IEEE/CVF Int. Conf. Comput. Vis., pp. 3343-3353, Oct. 2021. DOI: https://doi.org/10.1109/ICCV48922.2021.00333

M. Pfeiffer et al., "Generating large labeled data sets for laparoscopic image processing tasks using unpaired image-to-image translation", Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent, pp. 119-127, 2019. DOI: https://doi.org/10.1007/978-3-030-32254-0_14

S. J. Wirkert et al., "Physiological parameter estimation from multispectral images unleashed", Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent, pp. 134-141, 2017. DOI: https://doi.org/10.1007/978-3-319-66179-7_16

C. S. Ravasio et al., "Learned optical flow for intra-operative tracking of the retinal fundus", Int. J. Comput. Assist. Radiol. Surg., vol. 15, no. 5, pp. 827-836, May 2020. DOI: https://doi.org/10.1007/s11548-020-02160-9

L. Maier-Hein et al., "Can masses of non-experts train highly accurate image classifiers", Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent, pp. 438-445, Sep. 2014. DOI: https://doi.org/10.1007/978-3-319-10470-6_55

Malpani, S. S. Vedula, C. C. G. Chen and G. D. Hager, "A study of crowdsourced segment-level surgical skill assessment using pairwise rankings", Int. J. Comput. Assist. Radiol. Surg., vol. 10, no. 9, pp. 1435-1447, Sep. 2015. DOI: https://doi.org/10.1007/s11548-015-1238-6

S. Bodenstedt et al., "Active learning using deep Bayesian networks for surgical workflow analysis", Int. J. Comput. Assist. Radiol. Surg., vol. 14, no. 6, pp. 1079-1087, 2019. DOI: https://doi.org/10.1007/s11548-019-01963-9

T. Roß et al., "Exploiting the potential of unlabeled endoscopic video data with self-supervised learning", Int. J. Comput. Assist. Radiol. Surg., vol. 13, no. 6, pp. 925-933, 2018. DOI: https://doi.org/10.1007/s11548-018-1772-0

Z. Zrubka et al., "Predicting patient-level 3-level version of EQ-5D index scores from a large international database using machine learning and regression methods", Value Health, vol. 25, no. 9, pp. 1-12. DOI: https://doi.org/10.1016/j.jval.2022.01.024

H. Martins, I. Oakley and R. Ventura, "Design and evaluation of a head-mounted display for immersive 3D teleoperation of field robots", Robotica, vol. 33, no. 10, pp. 2166-2185, Dec. 2015. DOI: https://doi.org/10.1017/S026357471400126X

K. Moga, D. B. O. Boesl and T. Haidegger, "Augmented/mixed reality technologies supporting digital surgery", Proc. IEEE 19th Int. Symp. Intell. Syst. Informat. (SISY), pp. 183-189, Sep. 2021. DOI: https://doi.org/10.1109/SISY52375.2021.9582533

C. E. Reiley, T. Akinbiyi, D. Burschka, D. C. Chang, A. M. Okamura and D. D. Yuh, "Effects of visual force feedback on robot-assisted surgical task performance", J. Thoracic Cardiovascular Surg., vol. 135, no. 1, pp. 196-202, Jan. 2008. DOI: https://doi.org/10.1016/j.jtcvs.2007.08.043

L. Qian, A. Deguet and P. Kazanzides, "ARssist: Augmented reality on a head-mounted display for the first assistant in robotic surgery", Healthcare Technol. Lett., vol. 5, no. 5, pp. 194-200, Oct. 2018. DOI: https://doi.org/10.1049/htl.2018.5065

Y.-J. Lee, N. S. van den Berg, R. K. Orosco, E. L. Rosenthal and J. M. Sorger, "A narrative review of fluorescence imaging in robotic-assisted surgery", Laparoscopic Surg., vol. 5, pp. 31, Jul. 2021. DOI: https://doi.org/10.21037/ls-20-98

M. Balicki et al., "Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery", Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent, pp. 108-115, 2009. DOI: https://doi.org/10.1007/978-3-642-04268-3_14

M. Pinto et al., "Integration of a Raman spectroscopy system to a robotic-assisted surgical system for real-time tissue characterization during radical prostatectomy procedures", J. Biomed. Opt., vol. 24, no. 2, Feb. 2019. DOI: https://doi.org/10.1117/1.JBO.24.2.025001

S. Bauer et al., "Real-time range imaging in health care: A survey" in Time-of-Flight and Depth Imaging. Sensors Algorithms and Applications, Berlin, Germany:Springer, pp. 228-254, 2013. DOI: https://doi.org/10.1007/978-3-642-44964-2_11

Roberti et al., "A time-of-flight stereoscopic endoscope for anatomical 3D reconstruction", Proc. Int. Symp. Med. Robot. (ISMR), pp. 1-7, Nov. 2021. DOI: https://doi.org/10.1109/ISMR48346.2021.9661478

G. Lajkó, R. N. Elek and T. Haidegger, "Endoscopic image-based skill assessment in robot-assisted minimally invasive surgery", Sensors, vol. 21, no. 16, pp. 5412, Aug. 2021. DOI: https://doi.org/10.3390/s21165412

Y. Wang, Q. Sun, Z. Liu and L. Gu, "Visual detection and tracking algorithms for minimally invasive surgical instruments: A comprehensive review of the state-of-the-art", Robot. Auto. Syst., vol. 149, Mar. 2022. DOI: https://doi.org/10.1016/j.robot.2021.103945

Attanasio et al., "A comparative study of spatio-temporal U-Nets for tissue segmentation in surgical robotics", IEEE Trans. Med. Robot. Bionics, vol. 3, no. 1, pp. 53-63, Feb. 2021. DOI: https://doi.org/10.1109/TMRB.2021.3054326

R. Garrow et al., "Machine learning for surgical phase recognition: A systematic review", Ann. Surg., vol. 273, no. 4, pp. 684-693, Apr. 2021. DOI: https://doi.org/10.1097/SLA.0000000000004425

M. Kawka, T. M. Gall, C. Fang, R. Liu and L. R. Jiao, "Intraoperative video analysis and machine learning models will change the future of surgical training", Intell. Surg., vol. 1, pp. 13-15, Jan. 2022. DOI: https://doi.org/10.1016/j.isurg.2021.03.001

T. Haidegger, B. Benyó, L. Kovács and Z. Benyó, "Force sensing and force control for surgical robots", IFAC Proc. Volumes, vol. 42, no. 12, pp. 401-406, 2009. DOI: https://doi.org/10.3182/20090812-3-DK-2006.0035

Takács, I. J. Rudas and T. Haidegger, "The other end of human-robot interaction: Models for safe and efficient tool-tissue interactions" in Human-Robot Interaction, London, U.K.:Chapman & Hall, pp. 137-170, 2019. DOI: https://doi.org/10.1201/9781315213781-10

K. Golahmadi, D. Z. Khan, G. P. Mylonas and H. J. Marcus, "Tool-tissue forces in surgery: A systematic review", Ann. Med. Surgery, vol. 65, May 2021. DOI: https://doi.org/10.1016/j.amsu.2021.102268

T. B. Sheridan, "Human supervisory control of automation" in Handbook of Human Factors and Ergonomics, Hoboken, NJ, USA:Wiley, pp. 736-760, 2021. DOI: https://doi.org/10.1002/9781119636113.ch28

M. Okamura, "Haptics in robot-assisted minimally invasive surgery", The Encyclopedia of Medical Robotics: Minimally Invasive Surgical Robotics, vol. 1, pp. 317-339, 2019. DOI: https://doi.org/10.1142/9789813232266_0011

D. Julian, A. Tanaka, P. Mattingly, M. Truong, M. Perez and R. Smith, "A comparative analysis and guide to virtual reality robotic surgical simulators", Int. J. Med. Robot. Comput. Assist. Surg., vol. 14, no. 1, Feb. 2018. DOI: https://doi.org/10.1002/rcs.1874

Kirubarajan, D. Young, S. Khan, N. Crasto, M. Sobel and D. Sussman, "Artificial intelligence and surgical education: A systematic scoping review of interventions", J. Surgical Educ., vol. 79, no. 2, pp. 500-515, Mar. 2022. DOI: https://doi.org/10.1016/j.jsurg.2021.09.012

S. S. Vedula and G. D. Hager, "Surgical data science: The new knowledge domain", Innov. Surgical Sci., vol. 2, no. 3, pp. 109-121, Apr. 2017. DOI: https://doi.org/10.1515/iss-2017-0004

R. N. Elek and T. Haidegger, "Robot-assisted minimally invasive surgical skill assessment-manual and automated platforms", Acta Polytechnica Hungarica, vol. 16, no. 8, pp. 141-169, 2019. DOI: https://doi.org/10.12700/APH.16.8.2019.8.9

N. Ahmidi, G. D. Hager, L. Ishii, G. Fichtinger, G. L. Gallia and M. Ishii, "Surgical task and skill classification from eye tracking and tool motion in minimally invasive surgery", Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent, pp. 295-302, 2010. DOI: https://doi.org/10.1007/978-3-642-15711-0_37

R. N. Elek and T. Haidegger, "Non-technical skill assessment and mental load evaluation in robot-assisted minimally invasive surgery", Sensors, vol. 21, no. 8, pp. 2666, Apr. 2021. DOI: https://doi.org/10.3390/s21082666

Ohnishi et al., "A method for estimating Doctor’s fatigue level in operating a surgical robot using wearable sensors", Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops Other Affiliated Events (PerCom Workshops), pp. 38-43, Mar. 2021. DOI: https://doi.org/10.1109/PerComWorkshops51409.2021.9431055

Wu et al., "Eye-tracking metrics predict perceived workload in robotic surgical skills training", Hum. Factors J. Hum. Factors Ergonom. Soc., vol. 62, no. 8, pp. 1365-1386, Dec. 2020. DOI: https://doi.org/10.1177/0018720819874544

Published

15-01-2023

How to Cite

Alotaibi, F. M., Alotaibi, ‏Motaeb, Emam, ‏Arwa M., Alqahtani, ‏Naif S., Alheggi, ‏Ashwaq I., Alharbi, ‏Khlood K., Aldosari, ‏Muteb A., Alenizy, ‏Afnan S., Alarfaj, ‏Rawan M., Albaqami, ‏Ohud H., Alanazi, ‏Zaid H., Alghamdi, ‏Mahfoudh S., Alnefaie, ‏Jawaher S., Almutairi, ‏Sultana S., Alsharari, ‏Abdulaziz S., Alsharari, ‏Sami F., Al Shammary, ‏Abdulkhareem G., & Alharbi, N. H. M. (2023). Exploring the future of surgical practices: Advances in minimally invasive techniques and the integration of robotic technology. International Journal of Health Sciences, 7(S1), 3406–3421. https://doi.org/10.53730/ijhs.v7nS1.15090

Issue

Section

Peer Review Articles

Most read articles by the same author(s)

1 2 > >>