Exploring the impact and applications of artificial intelligence in advancing modern medical diagnostic practices-role of healthcare providers

Review article

https://doi.org/10.53730/ijhs.v4nS1.15087

Authors

  • Fahdah Mehsan Alotaibi KSA, National Guard Health Affairs
  • ‏Abdulrhman Ali Almazam KSA, National Guard Health Affairs
  • ‏Arwa Mohammad Emam KSA, National Guard Health Affairs
  • ‏Naif Saad Alqahtani KSA, National Guard Health Affairs
  • ‏Ashwaq Ibrahim Alheggi KSA, National Guard Health Affairs
  • ‏Waseem Nasser Alshahranl KSA, National Guard Health Affairs
  • ‏Ashwaq Fahad Alanazi KSA, National Guard Health Affairs
  • ‏Maryam Helal Alanazi KSA, National Guard Health Affairs
  • ‏Mahfoudh Saad Alghamdi KSA, National Guard Health Affairs
  • ‏Abdulaziz Shaem Alsharari KSA, National Guard Health Affairs
  • ‏Sami Farhan Alsharari KSA, National Guard Health Affairs
  • ‏Moteb Roshaid Alshamari KSA, National Guard Health Affairs
  • Ali Eid Atallah Albalawi KSA, National Guard Health Affairs
  • Mariam Adnan Alkhadrawi KSA, National Guard Health Affairs
  • Nasser Hamoud Mohammed Alharbi Ministry of National Guard Health Affairs

Keywords:

Artificial Intelligence, Healthcare, Medical Diagnostics, Machine Learning, Natural Language Processing, Patient Care

Abstract

Introduction: Since its inception in 1956, artificial intelligence (AI) has advanced significantly, especially in the past decade. AI's integration into healthcare has revolutionized medical diagnostic practices, enabling faster and more accurate analysis of medical records. By mimicking human intelligence, AI facilitates the processing of vast amounts of data, thus improving diagnosis, treatment, and patient care. Aim: This review article aims to explore the impact and applications of AI in modern medical diagnostics and evaluate its role across various healthcare providers, including physicians, pharmacists, nurses, radiologists, and pathologists. Methods: The article reviews recent advancements in AI technologies and their implementation in healthcare. It examines the benefits of AI across different medical domains and its impact on improving diagnostic accuracy, patient management, and treatment outcomes. Results: AI has demonstrated significant benefits in healthcare by enhancing diagnostic accuracy, personalizing treatment plans, and improving patient outcomes. Key technologies such as machine learning, artificial neural networks, and natural language processing have been pivotal in advancing medical diagnostics and patient care. Conclusion: AI is increasingly vital in modern medicine, offering solutions to complex diagnostic and treatment challenges. Its applications improve healthcare efficiency, accuracy, and patient satisfaction.

Downloads

Download data is not yet available.

References

Haleem, A., Vaishya, R., & Javaid, M. K. I. (2019). Artificial intelligence (AI) applications in orthopaedics: An innovative technology to embrace. Journal of Clinical Orthopaedics and Trauma. https://doi.org/10.1016/j.jcot.2019.06.012 DOI: https://doi.org/10.1016/j.jcot.2019.06.012

Jha, S., & Topol, E. J. (2018). Information and artificial intelligence. Journal of the American College of Radiology, 15(3 Pt B), 509–511. DOI: https://doi.org/10.1016/j.jacr.2017.12.025

Lupton, M. (2018). Some ethical and legal consequences of the application of artificial intelligence in the field of medicine. Trends in Medicine, 18(4), 1-7. DOI: https://doi.org/10.15761/TiM.1000147

Murdch, T. B., & Detsky, A. S. (2013). The inevitable application of big data to health care. JAMA, 309(13), 1351–1352. DOI: https://doi.org/10.1001/jama.2013.393

Misawa, M., Kudo, S. E., Mori, Y., et al. (2018). Artificial intelligence-assisted polyp detection for colonoscopy: Initial experience. Gastroenterology, 154, 2027–2029. DOI: https://doi.org/10.1053/j.gastro.2018.04.003

Caocci, G., Baccoli, R., Vacca, A., Mastronuzzi, A., Bertaina, A., Piras, E., Littera, R., Locatelli, F., Carcassi, C., & La Nasa, G. (2010). Comparison between an artificial neural network and logistic regression in predicting acute graft-vs-host disease after unrelated donor hematopoietic stem cell transplantation in thalassemia patients. Experimental Hematology, 38, 426–433. DOI: https://doi.org/10.1016/j.exphem.2010.02.012

Haleem, A., Javaid, M., & Vaishya, R. (2019). Industry 4.0 and its applications in orthopaedics. Journal of Clinical Orthopaedics and Trauma, 10(3), 615-616. DOI: https://doi.org/10.1016/j.jcot.2018.09.015

Guo, J., & Li, B. (2018). The application of medical artificial intelligence technology in rural areas of developing countries. Health Equity, 2(1), 174–181. DOI: https://doi.org/10.1089/heq.2018.0037

Atasoy, H., Greenwood, B. N., & McCullough, J. S. (2018). The digitization of patient care: A review of the effects of electronic health records on health care quality and utilization. Annual Review of Public Health, 40, 1. https://doi.org/10.1146/annurev-publhealth-040218-044206 DOI: https://doi.org/10.1146/annurev-publhealth-040218-044206

Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2, 230–243. DOI: https://doi.org/10.1136/svn-2017-000101

Haleem, A., & Javaid, M. (2019). Industry 5.0 and its expected applications in the medical field. Current Medicine Research and Practice, 9(4), 167-169. DOI: https://doi.org/10.1016/j.cmrp.2019.07.002

Buch, V. H., Ahmed, I., & Maruthappu, M. (2018). Artificial intelligence in medicine: Current trends and future possibilities. British Journal of General Practice, 68(668), 143-144. DOI: https://doi.org/10.3399/bjgp18X695213

Kulikowski, C. A. (2019). Beginnings of artificial intelligence in medicine (AIM): Computational artifice assisting scientific inquiry and clinical art - with reflections on present AIM challenges. Yearbook of Medical Informatics. https://doi.org/10.1055/s-0039-1677895 DOI: https://doi.org/10.1055/s-0039-1677895

Upadhyay, A. K., & Khandelwal, K. (2019). Artificial intelligence-based training learning from application. Development and Learning in Organizations: An International Journal, 33(2), 20-23. DOI: https://doi.org/10.1108/DLO-05-2018-0058

Hashmi, S. (2015). ‘Coming of age’ of artificial intelligence: Evolution of survivorship care through information technology. Bone Marrow Transplantation, 51, 41–42. DOI: https://doi.org/10.1038/bmt.2015.271

Mintz, Y., & Brodie, R. (2019). Introduction to artificial intelligence in medicine. Minimally Invasive Therapy & Allied Technologies, 28(2), 73-81. DOI: https://doi.org/10.1080/13645706.2019.1575882

Javaid, M., & Haleem, A. (2019). Industry 4.0 applications in the medical field: A brief review. Current Medicine Research and Practice, 9(3), 102-109. DOI: https://doi.org/10.1016/j.cmrp.2019.04.001

Lee, E. J., Kim, Y. H., Kim, N., et al. (2017). Deep into the brain: Artificial intelligence in stroke imaging. Journal of Stroke, 19, 277–285. DOI: https://doi.org/10.5853/jos.2017.02054

Muhsen, I. N., El Hassan, T., & Hashmi, S. K. (2018). Artificial intelligence approaches in hematopoietic cell transplantation: A review of the current status and future directions. Turkish Journal of Haematology, 35(3), 152-157. DOI: https://doi.org/10.4274/tjh.2018.0123

Miller, D. D., & Brown, E. W. (2018). Artificial intelligence in medical practice: The question to the answer? American Journal of Medicine, 131, 129–133. DOI: https://doi.org/10.1016/j.amjmed.2017.10.035

Xu, J., Yang, P., Xue, S., Sharma, B., Sanchez-Martin, M., Wang, F., Beaty, K. A., Dehan, E., & Parikh, B. (2019). Translating cancer genomics into precision medicine with artificial intelligence: Applications, challenges, and future perspectives. Human Genetics, 138(2), 109-124. DOI: https://doi.org/10.1007/s00439-019-01970-5

Kinnings, S. L., Liu, N., Tonge, P. J., Jackson, R. M., Xie, L., & Bourne, P. E. (2011). A machine learning-based method to improve docking scoring functions and its application to drug repurposing. Journal of Chemical Information and Modeling, 51, 408–419. DOI: https://doi.org/10.1021/ci100369f

Varnek, A., & Baskin, I. (2012). Machine learning methods for property prediction in chemoinformatics: Quo Vadis? Journal of Chemical Information and Modeling, 52, 1413–1437. DOI: https://doi.org/10.1021/ci200409x

Ain, Q. U., Aleksandrova, A., Roessler, F. D., & Ballester, P. J. (2015). Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdisciplinary Reviews: Computational Molecular Science, 5(6), 405-424. DOI: https://doi.org/10.1002/wcms.1225

Erickson, B. J., Korfiatis, P., Akkus, Z., & Kline, T. L. (2017). Machine learning for medical imaging. Radiographics, 37(2), 505-515. DOI: https://doi.org/10.1148/rg.2017160130

Zeng, X., & Luo, G. (2017). Progressive sampling-based Bayesian optimization for efficient and automatic machine learning model selection. Health Information Science and Systems, 5(1), 2. https://doi.org/10.1007/s13755-017-0023-z DOI: https://doi.org/10.1007/s13755-017-0023-z

Li, D., Madden, A., Liu, C., Ding, Y., Qian, L., & Zhou, E. (2018). Modelling online user behaviour for medical knowledge learning. Industrial Management & Data Systems, 118(4), 889-911. DOI: https://doi.org/10.1108/IMDS-07-2017-0309

Wesolowski, M., & Suchacz, B. (2012). Artificial neural networks: Theoretical background and pharmaceutical applications: A review. Journal of AOAC International, 95, 652–668. DOI: https://doi.org/10.5740/jaoacint.SGE_Wesolowski_ANN

Saravanan, K., & Sasithra, S. (2014). Review on classification based on artificial neural networks. International Journal of Ambient Systems and Applications (IJASA), 2(4), 11–18. DOI: https://doi.org/10.5121/ijasa.2014.2402

Pastur-Romay, L. A., Cedrón, F., Pazos, A., & Porto-Pazos, A. B. (2016). Deep artificial neural networks and neuromorphic chips for big data analysis: Pharmaceutical and bioinformatics applications. International Journal of Molecular Sciences, 17(8), 1313. https://doi.org/10.3390/ijms17081313 DOI: https://doi.org/10.3390/ijms17081313

Li, H., Zhang, Z., & Liu, Z. (2017). Application of artificial neural networks for catalysis: A review. Catalysts, 7(10), 306. DOI: https://doi.org/10.3390/catal7100306

Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938. https://doi.org/10.1016/j.heliyon.2018.e00938 DOI: https://doi.org/10.1016/j.heliyon.2018.e00938

Shahid, N., Rappon, T., & Berta, W. (2019). Applications of artificial neural networks in health care organizational decision-making: A scoping review. PLoS One, 14(2), e0212356. https://doi.org/10.1371/journal.pone.0212356 DOI: https://doi.org/10.1371/journal.pone.0212356

Dutta, S., Long, W. J., Brown, D. F., & Reisner, A. T. (2013). Automated detection using natural language processing of radiologists' recommendations for additional imaging of incidental findings. Annals of Emergency Medicine, 62(2), 162–169. DOI: https://doi.org/10.1016/j.annemergmed.2013.02.001

Heintzelman, N. H., Taylor, R. J., Simonsen, L., Lustig, R., Anderko, D., Haythornthwaite, J. A., Childs, L. C., & Bova, G. S. (2013). Longitudinal analysis of pain in patients with metastatic prostate cancer using natural language processing of medical record text. Journal of the American Medical Informatics Association, 20(5), 898-905. DOI: https://doi.org/10.1136/amiajnl-2012-001076

Cai, T., Giannopoulos, A. A., Yu, S., Kelil, T., Ripley, B., Kumamaru, K. K., Rybicki, F. J., & Mitsouras, D. (2016). Natural language processing technologies in radiology research and clinical applications. Radiographics, 36(1), 176–191. DOI: https://doi.org/10.1148/rg.2016150080

Savova, G. K., Tseytlin, E., Finan, S., Castine, M., Miller, T., Medvedeva, O., Harris, D., Hochheiser, H., Lin, C., Chavan, G., & Jacobson, R. S. (2017). DeepPhe: A natural language processing system for extracting cancer phenotypes from clinical records. Cancer Research, 77(21), e115–e118. DOI: https://doi.org/10.1158/0008-5472.CAN-17-0615

Verma, R., & Melcher, U. (2012). A support vector machine based method to distinguish proteobacterial proteins from eukaryotic plant proteins. BMC Bioinformatics, 13(Suppl 15), S9. https://doi.org/10.1186/1471-2105-13-S15-S9 DOI: https://doi.org/10.1186/1471-2105-13-S15-S9

Zhu, B., Chen, H., Chen, B., Xu, Y., & Zhang, K. (2014). Support vector machine model for diagnosing pneumoconiosis based on wavelet texture features of digital chest radiographs. Journal of Digital Imaging, 27(1), 90–97. https://doi.org/10.1007/s10278-013-9620-9 DOI: https://doi.org/10.1007/s10278-013-9620-9

Gu, X., Ni, T., & Wang, H. (2014). New fuzzy support vector machine for the class imbalance problem in medical datasets classification. Scientific World Journal. https://doi.org/10.1155/2014/536434 DOI: https://doi.org/10.1155/2014/536434

Retico, A., Bosco, P., Cerello, P., Fiorina, E., Chincarini, A., & Fantacci, M. E. (2015). Predictive models based on support vector machines: Whole-brain versus regional analysis of structural MRI in Alzheimer's disease. Journal of Neuroimaging, 25(4), 552–563. DOI: https://doi.org/10.1111/jon.12163

Wang, Z. L., Zhou, Z. G., Chen, Y., Li, X. T., & Sun, Y. S. (2017). Support vector machines model of computed tomography for assessing lymph node metastasis in esophageal cancer with neoadjuvant chemotherapy. Journal of Computer Assisted Tomography, 41(3), 455–460. DOI: https://doi.org/10.1097/RCT.0000000000000555

Davies, N., Manthorpe, J., Sampson, E. L., & Iliffe, S. (2015). After the Liverpool Care Pathway—development of heuristics to guide end of life care for people with dementia: Protocol of the ALCP study. BMJ Open, 5(9), e008832. DOI: https://doi.org/10.1136/bmjopen-2015-008832

Davies, N., Mathew, R., Wilcock, J., Manthorpe, J., Sampson, E. L., Lamahewa, K., & Iliffe, S. (2016). A co-design process developing heuristics for practitioners providing end of life care for people with dementia. BMC Palliative Care, 15, 68. https://doi.org/10.1186/s12904-016-0146-z DOI: https://doi.org/10.1186/s12904-016-0146-z

Mohan, D., Rosengart, M. R., Fischhoff, B., Angus, D. C., Farris, C., Yealy, D. M., Wallace, D. J., & Barnato, A. E. (2016). Testing a videogame intervention to recalibrate physician heuristics in trauma triage: Study protocol for a randomized controlled trial. BMC Emergency Medicine, 16(1), 44. https://doi.org/10.1186/s12873-016-0108-z DOI: https://doi.org/10.1186/s12873-016-0108-z

Davies, N., Manthorpe, J., Sampson, E. L., Lamahewa, K., Wilcock, J., Mathew, R., & Iliffe, S. (2018). Guiding practitioners through the end of life care for people with dementia: The use of heuristics. PLoS One, 13(11), e0206422. DOI: https://doi.org/10.1371/journal.pone.0206422

Patel, V. L., Shortliffe, E. H., Stefanelli, M., Szolovits, P., Berthold, M. R., Bellazzi, R., & Abu-Hanna, A. (2009). The coming of age of artificial intelligence in medicine. Artificial Intelligence in Medicine, 46, 5–17. DOI: https://doi.org/10.1016/j.artmed.2008.07.017

Wahl, B., Cossy-Gantner, A., Germann, S., & Schwalbe, N. R. (2018). Artificial intelligence (AI) and global health: How can AI contribute to health in resource-poor settings? BMJ Global Health, 3(4), e000798. DOI: https://doi.org/10.1136/bmjgh-2018-000798

Bashiri, A., Ghazisaeedi, M., Safdari, R., Shahmoradi, L., & Ehtesham, H. (2017). Improving the prediction of survival in cancer patients by using machine learning techniques: Experience of gene expression data: A narrative review. Iranian Journal of Public Health, 46(2), 165–172. DOI: https://doi.org/10.19082/ah136

Long, E., Lin, H., Liu, Z., Wu, X., Wang, L., Jiang, J., An, Y., Lin, Z., Li, X., Chen, J., et al. (2017). An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nature Biomedical Engineering, 1, 24. DOI: https://doi.org/10.1038/s41551-016-0024

Yi, P. H., Hui, F. K., & Ting, D. S. W. (2018). Artificial intelligence and radiology: Collaboration is key. Journal of the American College of Radiology, 15(5), 781–783. DOI: https://doi.org/10.1016/j.jacr.2017.12.037

Winter, J. S., & Davidson, E. (2019). Governance of artificial intelligence and personal health information. Digital Policy, Regulation and Governance. https://doi.org/10.1108/DPRG-08-2018-0048 DOI: https://doi.org/10.1108/DPRG-08-2018-0048

Hai, T. S., & Thuy, N. T. (2012). Image classification using support vector machine and artificial neural network. International Journal of Information Technology and Computer Science, 4, 32–38. DOI: https://doi.org/10.5815/ijitcs.2012.05.05

Balkanyi, L., & Cornet, R. (2019). The interplay of knowledge representation with various fields of artificial intelligence in medicine. Yearbook of Medical Informatics. https://doi.org/10.1055/s-0039-1677899 DOI: https://doi.org/10.1055/s-0039-1677899

Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 452–459. DOI: https://doi.org/10.1038/nature14541

Weidlich, V., & Weidlich, G. A. (2018). Artificial intelligence in medicine and radiation oncology. Cureus, 10(4), e2475. https://doi.org/10.7759/cureus.2475 DOI: https://doi.org/10.7759/cureus.2475

Kantarjian, H., & Yu, P. P. (2015). Artificial intelligence, big data, and cancer. JAMA Oncology, 1, 573–574. DOI: https://doi.org/10.1001/jamaoncol.2015.1203

Wartman, S. A., & Combs, C. D. (2018). Medical education must move from the information age to the age of artificial intelligence. Academic Medicine, 93(8), 1107–1109. DOI: https://doi.org/10.1097/ACM.0000000000002044

Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial intelligence in precision cardiovascular medicine. Journal of the American College of Cardiology, 69, 2657–2664. DOI: https://doi.org/10.1016/j.jacc.2017.03.571

Hamet, P., & Tremblay, J. (2017). Artificial intelligence in medicine. Metabolism, 69, 36–40. DOI: https://doi.org/10.1016/j.metabol.2017.01.011

Sachs, P. B., Gassert, G., Cain, M., Rubinstein, D., Davey, M., & Decoteau, D. (2013). Imaging study protocol selection in the electronic medical record. Journal of the American College of Radiology, 10, 220–22. DOI: https://doi.org/10.1016/j.jacr.2012.11.004

Luxton, D. D. (2014). Recommendations for the ethical use and design of artificial intelligent care providers. Artificial Intelligence in Medicine, 62(1), 1–10. DOI: https://doi.org/10.1016/j.artmed.2014.06.004

Jha, S., & Topol, E. J. (2016). Adapting to artificial intelligence: Radiologists and pathologists as information specialists. JAMA, 316, 2353–2354. DOI: https://doi.org/10.1001/jama.2016.17438

Noorbakhsh-Sabet, N., Zand, R., Zhang, Y., & Abedi, V. (2019). Artificial intelligence transforms the future of health care. American Journal of Medicine. https://doi.org/10.1016/j.amjmed.2019.03.020 DOI: https://doi.org/10.1016/j.amjmed.2019.01.017

Tran, B. X., Vu, G. T., Ha, G. H., Vuong, Q. H., Ho, M. T., Vuong, T. T., La, V. P., Ho, M. T., Nghiem, K. P., Nguyen, H. L. T., Latkin, C. A., Tam, W. W. S., Cheung, N. M., Nguyen, H. T., Ho, C. S. H., & Ho, R. C. M. (2019). Global evolution of research in artificial intelligence in health and medicine: A bibliometric study. Journal of Clinical Medicine, 8(3), 360. https://doi.org/10.3390/jcm8030360 DOI: https://doi.org/10.3390/jcm8030360

Chouard, T., & Venema, L. (2015). Machine intelligence. Nature, 521(7553), 435. DOI: https://doi.org/10.1038/521435a

Scherer, M. U. (2016). Regulating artificial intelligence systems: Risks, challenges, competencies, and strategies. Harvard Journal of Law & Technology, 29, 354–400. DOI: https://doi.org/10.2139/ssrn.2609777

Patel, J. L., & Goyal, R. K. (2007). Applications of artificial neural networks in medical science. Current Clinical Pharmacology, 2, 217–226. DOI: https://doi.org/10.2174/157488407781668811

Fernandez-Luque, L., & Imran, M. (2018). Humanitarian health computing using artificial intelligence and social media: A narrative literature review. International Journal of Medical Informatics, 114, 136–142. DOI: https://doi.org/10.1016/j.ijmedinf.2018.01.015

Ramesh, A. N., Kambhampati, C., Monson, J. R. T., & Drew, P. J. (2004). Artificial intelligence in medicine. Annals of the Royal College of Surgeons of England, 86(5), 334–338. DOI: https://doi.org/10.1308/147870804290

He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 25(1), 30–36. DOI: https://doi.org/10.1038/s41591-018-0307-0

Yu, K. H., & Kohane, I. S. (2019). Framing the challenges of artificial intelligence in medicine. BMJ Quality & Safety, 28(3), 238–241. DOI: https://doi.org/10.1136/bmjqs-2018-008551

Dilsizian, S. E., & Siegel, E. L. (2014). Artificial intelligence in medicine and cardiac imaging: Harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Current Cardiology Reports, 16(12), 441. DOI: https://doi.org/10.1007/s11886-013-0441-8

Pesapane, F., Volonté, C., Codari, M., & Sardanelli, F. (2018). Artificial intelligence as a medical device in radiology: Ethical and regulatory issues in Europe and the United States. Insights into Imaging, 9(6), 745–753. DOI: https://doi.org/10.1007/s13244-018-0645-y

Buzeav, I. V., Plechev, V., Nikolaeva, I. E., et al. (2016). Artificial intelligence: Neural network model as the multidisciplinary team member in clinical decision support to avoid medical mistakes. Chronic Diseases Translational Medicine, 2(4), 166–172. DOI: https://doi.org/10.1016/j.cdtm.2016.09.007

Shaban-Nejad, A., Michalowski, M., & Buckeridge, D. L. (2018). Health intelligence: How artificial intelligence transforms population and personalized health. NPJ Digital Medicine, 1, 53. https://doi.org/10.1038/s41746-018-0058-9 DOI: https://doi.org/10.1038/s41746-018-0058-9

Vuong, Q. H., Ho, M. T., Vuong, T. T., La, V. P., Ho, M. T., Nghiem, K. P., Tran, B. X., Giang, H. H., Giang, T. V., Latkin, C., Nguyen, H. T., Ho, C. S. H., & Ho, R. C. M. (2019). Artificial Intelligence vs Natural Stupidity: Evaluating AI readiness for the Vietnamese Medical Information System. Journal of Clinical Medicine, 8(2), 168. https://doi.org/10.3390/jcm8020168 DOI: https://doi.org/10.3390/jcm8020168

Douali, N., Csaba, H., De Roo, J., Papageorgiou, E. I., & Jaulent, M. C. (2014). Diagnosis support system based on clinical guidelines: Comparison between case-based fuzzy cognitive maps and Bayesian networks. Computers in Biology and Medicine, 113, 133–143. DOI: https://doi.org/10.1016/j.cmpb.2013.09.012

Mayo, R. C., & Leung, J. (2018). Artificial intelligence and deep learning – Radiology’s next frontier? Clinical Imaging, 49, 87–88. DOI: https://doi.org/10.1016/j.clinimag.2017.11.007

Shortliffe, E. H. (2019). Artificial Intelligence in Medicine: Weighing the accomplishments, hype, and promise. Yearbook of Medical Informatics. https://doi.org/10.1055/s-0039-1677891 DOI: https://doi.org/10.1055/s-0039-1677891

Pomprapa, A., MuangKhong, D., Köny, M., Leonhardt, S., Pickerodt, P., Tjarks, O., Schwaiberger, D., & Lachmann, B. (2015). Artificial intelligence for closed-loop ventilation therapy with hemodynamic control using the open lung concept. International Journal of Intelligent Computing and Cybernetics, 8(1), 50–68. DOI: https://doi.org/10.1108/IJICC-05-2014-0025

Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C., & Faisal, A. A. (2018). The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nature Medicine, 24(11), 1716–1720. DOI: https://doi.org/10.1038/s41591-018-0213-5

Tien, B. D., Bui, Q. T., Nguyen, Q. P., Pradhan, B., Nampak, H., & Trinh, P. T. (2017). A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modelling at a tropical area. Agricultural and Forest Meteorology, 233, 32–44. DOI: https://doi.org/10.1016/j.agrformet.2016.11.002

Vellido, A. (2019). Societal issues concerning the application of artificial intelligence in medicine. Kidney Diseases (Basel), 5(1), 11–17. DOI: https://doi.org/10.1159/000492428

Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. DOI: https://doi.org/10.1038/s41591-018-0300-7

Bur, A. M., Shew, M., & New, J. (2019). Artificial intelligence for the otolaryngologist: A state of the art review. Otolaryngology–Head and Neck Surgery, 160(4), 603–611. DOI: https://doi.org/10.1177/0194599819827507

Additive Manufacturing Applications in Industry 4.0: A Review. (2019). Journal of Industrial Integration and Management, 4(2). https://doi.org/10.1142/S2424862219300011 DOI: https://doi.org/10.1142/S2424862219300011

Van Hartskamp, M., Consoli, S., Verhaegh, W., Petkovic, M., & van de Stolpe, A. (2019). Artificial intelligence in clinical health care applications: Viewpoint. Interactive Journal of Medical Research, 8(2), e12100. https://doi.org/10.2196/12100 DOI: https://doi.org/10.2196/12100

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. DOI: https://doi.org/10.1038/nature21056

Wang, R., Pan, W., Jin, L., Li, Y., Geng, Y., Gao, C., Chen, G., Wang, H., Ma, D., & Liao, S. (2019). Artificial intelligence in reproductive medicine. Reproduction. https://doi.org/10.1530/REP-18-0523 DOI: https://doi.org/10.1530/REP-18-0523

Hashimoto, D. A., Rosman, G., Rus, D., & Meireles, O. R. (2018). Artificial intelligence in surgery: Promises and perils. Annals of Surgery, 268(1), 70–76. DOI: https://doi.org/10.1097/SLA.0000000000002693

Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. W. L. (2018). Artificial intelligence in radiology. Nature Reviews Cancer, 18(8), 500–510. DOI: https://doi.org/10.1038/s41568-018-0016-5

Published

15-01-2020

How to Cite

Alotaibi, F. M., Almazam, ‏Abdulrhman A., Emam, ‏Arwa M., Alqahtani, ‏Naif S., Alheggi, ‏Ashwaq I., Alshahranl, ‏Waseem N., Alanazi, ‏Ashwaq F., Alanazi, ‏Maryam H., Alghamdi, ‏Mahfoudh S., Alsharari , ‏Abdulaziz S., Alsharari, ‏Sami F., Alshamari, ‏Moteb R., Albalawi, A. E. A., Alkhadrawi, M. A., & Alharbi, N. H. M. (2020). Exploring the impact and applications of artificial intelligence in advancing modern medical diagnostic practices-role of healthcare providers: Review article. International Journal of Health Sciences, 4(S1), 114–131. https://doi.org/10.53730/ijhs.v4nS1.15087

Issue

Section

Peer Review Articles

Most read articles by the same author(s)

1 2 > >>