The impact of medication administration on laboratory test results and nursing interventions
Keywords:
Medication administration, laboratory test results, drug-laboratory test interactions, nursing interventions, diagnostic accuracy, medication reconciliationAbstract
Background: Medication administration is one of the cardinal measures of patient care that will impact patient recovery as well as deserve high levels of concern regarding dose, route, and time of administration. However, drug effect interference with lab tests further blurs the likelihood ratio of investigations making patient conditions unreliable. It is primarily the responsibility of the nurses to coordinate these encounters safely and effectively to administer the medications and to observe the laboratory test results. Aim: The goal of this study is to scrutinize the effects of medication administration on laboratory tests, and the nursing actions required to prevent, control and resolve such drug-laboratory test interactions. Methods: The case reviews of medications and clinical propositions were carried out, with a focus at outcomes on laboratory tests and consequent actions of the nurse. Actual cases were interrogated with the intention of understanding how drug-laboratory tests interacted and how potential risks could be managed. Results: Moreover, the findings reveal that medications like warfarin, biotin, corticosteroids, rifampin affect laboratory tests and can cause diagnostic mistakes or improper dose modification.
Downloads
References
Whitehead, N. S., Williams, L., Meleth, S., Kennedy, S., & Nneka. (2019). The effect of laboratory test-based clinical decision support tools on medication errors and adverse drug events: A laboratory medicine best practices systematic review. The Journal of Applied Laboratory Medicine, 3(6), 1035-1048. DOI: https://doi.org/10.1373/jalm.2018.028019
Awdishu, L., Coates, C. R., Lyddane, A., et al. (2016). The impact of real-time alerting on appropriate prescribing in kidney disease: A cluster randomized controlled trial. Journal of the American Medical Informatics Association, 23(4), 609-616. DOI: https://doi.org/10.1093/jamia/ocv159
Buehler, S. S., Madison, B., Snyder, S. R., Derzon, J. H., Cornish, N. E., Saubolle, M. A., et al. (2016). Effectiveness of practices to increase timeliness of providing targeted therapy for inpatients with bloodstream infections: A laboratory medicine best practices systematic review and meta-analysis. Clinical Microbiology Reviews, 29(1), 59-103. DOI: https://doi.org/10.1128/CMR.00053-14
LaRocco, M. T., Franek, J., Leibach, E. K., Weissfeld, A. S., Kraft, C. S., Sautter, R. L., et al. (2016). Effectiveness of preanalytic practices on contamination and diagnostic accuracy of urine cultures: A laboratory medicine best practices systematic review and meta-analysis. Clinical Microbiology Reviews, 29(1), 105-147. DOI: https://doi.org/10.1128/CMR.00030-15
Sandhu, P. K., Musaad, S. M., Remaley, A. T., Buehler, S. S., Strider, S., Derzon, J. H., et al. (2016). Lipoprotein biomarkers and risk of cardiovascular disease: A laboratory medicine best practices (LMBP) systematic review. Journal of Applied Laboratory Medicine, 1(3), 214-229. DOI: https://doi.org/10.1373/jalm.2016.021006
Tucker, A. L. (2016). The impact of workaround difficulty on frontline employees' response to operational failures: A laboratory experiment on medication administration. Management Science, 62(4), 1124-1144.
Van Balveren, J. A., Verboeket-van de Venne, W. P. H. G., & Erdem-Fraslan, L. (2018). Impact of interactions between drugs and laboratory test results on diagnostic test interpretation: A systematic review. Clinical Chemistry and Laboratory Medicine, 56(12), 2004-2009. DOI: https://doi.org/10.1515/cclm-2018-0900
Ferraro, S., Braga, F., & Panteghini, M. (2016). Laboratory medicine in the new healthcare environment. Clinical Chemistry and Laboratory Medicine, 54(4), 523-533. DOI: https://doi.org/10.1515/cclm-2015-0803
Tolley, C. L., Slight, S. P., Husband, A. K., Watson, N., & Bates, D. W. (2018). Improving medication-related clinical decision support. American Journal of Health-System Pharmacy, 75(5), 239-246. DOI: https://doi.org/10.2146/ajhp160830
World Health Organization. (2021). Hepatitis C rapid diagnostic tests for professional use and/or self-testing, 2021 update: TSS-16. World Health Organization.
Deeks, J. J., Bossuyt, P. M., Leeflang, M. M., & Takwoingi, Y. (2023). Cochrane handbook for systematic reviews of diagnostic test accuracy. John Wiley & Sons. DOI: https://doi.org/10.1002/9781119756194
Dong, Y., Mo, X., Hu, Y., et al. (2020). Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China. Pediatrics, 220, 200702. https://doi.org/10.1542/peds.2020-0702 DOI: https://doi.org/10.1542/peds.2020-0702
Li, R., Pei, S., Chen, B., et al. (2020). Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science, 368(6490), 489-493. https://doi.org/10.1126/science.abb3221 DOI: https://doi.org/10.1126/science.abb3221
Sharfstein, J. M., Becker, S. J., & Mello, M. M. (2020). Diagnostic testing for the novel coronavirus. JAMA, 323(11), 1061-1062. https://doi.org/10.1001/jama.2020.3864 DOI: https://doi.org/10.1001/jama.2020.3864
Guyatt, G., Renie, D., Meade, M. O., & Cook, D. J. (2015). Users' guides to the medical literature: A manual for evidence-based clinical practice (3rd ed.). McGraw-Hill.
Fang, Y., Zhang, H., Xie, J., et al. (2020). Sensitivity of chest CT for COVID-19: Comparison to RT-PCR. Radiology. https://doi.org/10.1148/radiol.2020200432 DOI: https://doi.org/10.1148/radiol.2020200432
Al Shoyaib, A., Rahman, S., Archie, V. T., & Karamyan, V. T. (2020). Intraperitoneal route of drug administration: Should it be used in experimental animal studies? Pharmaceutical Research, 37(1), 12. DOI: https://doi.org/10.1007/s11095-019-2745-x
Solass, W., Horvath, P., Struller, F., Konigsrainer, I., Beckert, S., Konigsrainer, A., et al. (2016). Functional vascular anatomy of the peritoneum in health and disease. Pleura and Peritoneum, 1(3), 145-158. DOI: https://doi.org/10.1515/pp-2016-0015
Matzneller, P., Kussmann, M., Eberl, S., Maier-Salamon, A., Jager, W., Bauer, M., et al. (2018). Pharmacokinetics of the P-gp inhibitor Tariquidar in rats after intravenous, oral, and intraperitoneal administration. European Journal of Drug Metabolism and Pharmacokinetics, 43(5), 599-606. DOI: https://doi.org/10.1007/s13318-018-0474-x
Wangler, N. J., Jayaraman, S., Zhu, R., Mechref, Y., Abbruscato, T. J., Bickel, U., et al. (2016). Preparation and preliminary characterization of recombinant neurolysin for in vivo studies. Journal of Biotechnology, 234, 105-115. DOI: https://doi.org/10.1016/j.jbiotec.2016.07.007
Griffiths, K., Binder, U., McDowell, W., Tommasi, R., Frigerio, M., Darby, W. G., et al. (2019). Half-life extension and non-human primate pharmacokinetic safety studies of i-body AD-114 targeting human CXCR4. MAbs, 11(7), 1331-1340. https://doi.org/10.1080/19420862.2019.1630696 DOI: https://doi.org/10.1080/19420862.2019.1626652
Cardenas, P. A., Kratz, J. M., Hernandez, A., Costa, G. M., Ospina, L. F., Baena, Y., Simoes, C. M. O., Jimenez-Kairuz, A., & Aragon, M. (2017). In vitro intestinal permeability studies, pharmacokinetics and tissue distribution of 6-methylcoumarin after oral and intraperitoneal administration in Wistar rats. Brazilian Journal of Pharmaceutical Sciences, 53(1). https://doi.org/10.1590/s2175-97902017000100011 DOI: https://doi.org/10.1590/s2175-97902017000116081
Gad, S. C., Spainhour, C. B., Shoemake, C., Pallman, D. R., Stricker-Krongrad, A., Downing, P. A., et al. (2016). Tolerable levels of nonclinical vehicles and formulations used in studies by multiple routes in multiple species with notes on methods to improve utility. International Journal of Toxicology, 35(2), 95-178. https://doi.org/10.1177/1091581816635143 DOI: https://doi.org/10.1177/1091581815622442
Aggar, C., Bloomfield, J. G., Frotjold, A., Thomas, T. H. T., & Koo, F. (2018). A time management intervention using simulation to improve nursing students' preparedness for medication administration in the clinical setting: A quasi-experimental study. Collegian, 25(1), 105-111. https://doi.org/10.1016/j.colegn.2017.03.005
Wertheim, B. M., Aguirre, A. J., Bhattacharyva, R. P., Chorba, J., & P, A. (2017). An educational and administrative intervention to promote rational laboratory test ordering on an academic general medicine service. The American Journal of Medicine, 130(1), 47-53. https://doi.org/10.1016/j.amjmed.2016.08.033
Tucker, A. L. (2016). The impact of workaround difficulty on frontline employees' response to operational failures: A laboratory experiment on medication administration. Management Science, 62(4), 1124-1144. https://doi.org/10.1287/mnsc.2015.2223 DOI: https://doi.org/10.1287/mnsc.2015.2170
Millichamp, T., & Johnston, A. N. B. (2020). Interventions to support safe medication administration by emergency department nurses: An integrative review. International Emergency Nursing, 49, 100811. https://doi.org/10.1016/j.ienj.2019.100811 DOI: https://doi.org/10.1016/j.ienj.2019.100811
Perry, A. G., Potter, P. A., & Ostendorf, W. R. (2019). Nursing interventions & clinical skills e-book (8th ed.). Elsevier Health Sciences.
Albuquerque de Oliveira, J. K., Llapa-Rodriquez, E. O., & Lobo, I. M. F. (2018). Patient safety in nursing care during medication administration. Revista Latino-Americana de Enfermagem, 26, e3017. https://doi.org/10.1590/1518-8345.2384.3017 DOI: https://doi.org/10.1590/1518-8345.2350.3017
Aggar, C., Bloomfield, J. G., Frotjold, A., Thomas, T. H. T., & Koo, F. (2018). A time management intervention using simulation to improve nursing students' preparedness for medication administration in the clinical setting: A quasi-experimental study. Collegian, 25(1), 105-111. https://doi.org/10.1016/j.colegn.2017.01.004 DOI: https://doi.org/10.1016/j.colegn.2017.04.004
Wertheim, B. M., Aguirre, A. J., Bhattacharyva, R. P., Chorba, J., & P., A. (2017). An educational and administrative intervention to promote rational laboratory test ordering on an academic general medicine service. The American Journal of Medicine, 130(1), 47-53. https://doi.org/10.1016/j.amjmed.2016.08.037 DOI: https://doi.org/10.1016/j.amjmed.2016.08.021
Van Leeuwen, A. M., & Bladh, M. L. (2019). Davis's comprehensive manual of laboratory and diagnostic tests with nursing implications. FA Davis.
Chegini, Z., Jafari-Koshki, T., Kheiri, M., Behforoz, A., & Alivari, S. (2020). Missed nursing care and related factors in Iranian hospitals: A cross-sectional survey. Journal of Nursing Management, 28(8), 2205-2215. https://doi.org/10.1111/jonm.13014 DOI: https://doi.org/10.1111/jonm.13055
Sole, M. L., Klein, D. G., & Moseley, M. J. (2020). Introduction to critical care nursing E-book. Elsevier Health Sciences.
Published
How to Cite
Issue
Section
Copyright (c) 2023 International journal of health sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.