Advanced technologies in rehabilitation programs: Role of AI in diagnosis-an updated review
Keywords:
Cognitive decline, Cognitive Rehabilitation Therapy, AI, Personalized rehabilitation, Machine learning, Reinforcement learning, Neurodegenerative diseases, Assistive technology, Virtual reality, Rehabilitation appsAbstract
Background: Cognitive decline, particularly associated with aging and neurodegenerative disorders, significantly affects individuals' ability to perform daily activities. Cognitive Rehabilitation Therapy (CRT) offers a non-pharmacological intervention that focuses on regaining or compensating for lost cognitive functions. The integration of Artificial Intelligence (AI) into rehabilitation programs has shown transformative potential in enhancing diagnosis, personalized care, and improving outcomes for patients with cognitive impairments. Aim: This updated review explores the role of AI in personalized rehabilitation programs, particularly focusing on diagnosis and Cognitive Rehabilitation Therapy (CRT) and assistive technologies. The aim is to assess how AI technologies, including machine learning (ML) and reinforcement learning (RL), can be leveraged to personalize cognitive rehabilitation interventions and improve patient outcomes. Methods: The review synthesizes studies on AI-driven rehabilitation interventions, including personalized rehabilitation applications, virtual reality-based treatments, and assistive robotic technologies. It examines the efficacy of reinforcement learning and AI-powered platforms in creating adaptive, personalized rehabilitation environments. The review also explores applications for diverse neurological conditions such as dementia, multiple sclerosis (MS), and autism spectrum disorder (ASD). Results: The review identifies several AI-driven interventions, such as personalized apps for dementia and MS, virtual reality treatments for cognitive impairments, and social robots that aid memory training.
Downloads
References
Henderson C TG, Evans-Lacko S. Mental illness stigma, help seeking, and public health programs. Am J Public Health. 2013;103(5):777–780. DOI: https://doi.org/10.2105/AJPH.2012.301056
Novakovic-Agopians T, Abrams G. Cognitive rehabilitation therapy. In: Aminoff MJ, Daroff RB, editors. Encyclopedia of the Neurological Sciences. second edition ed. Oxford: Academic Press; 2014:824–826. DOI: https://doi.org/10.1016/B978-0-12-385157-4.00481-4
Rai S, Misra D, Misra A, Jain A, Bisla S. Impact of oral health factors on quality of life of geriatric population - a systematic review. J Indian Acad Oral Med Radiol. 2021. DOI: https://doi.org/10.4103/jiaomr.jiaomr_98_20
Coronato A, Naeem M, De Pietro G, Paragliola G. Rein- forcement learning for intelligent healthcare applications: a survey. Artif. Intell. Med. 2020;:101964. doi:10.1016/j.artmed.2020.101964 DOI: https://doi.org/10.1016/j.artmed.2020.101964
Naeem M, Coronato A, Paragliola G. Adaptive treatment assisting system for patients using machine learning. In: 2019 sixth international conference on social networks analysis, management and security (SNAMS). IEEE; 2019:460–465. DOI: https://doi.org/10.1109/SNAMS.2019.8931857
Shah SIH, Coronato A, Naeem M, De Pietro G. Learning and assessing optimal dynamic treatment regimes through cooperative imitation learning. IEEE Access. 2022;:78 148–78 158. doi:10.1109/ACCESS.2022.3193494 DOI: https://doi.org/10.1109/ACCESS.2022.3193494
Bond RR, Mulvenna MD, Potts C, O’Neill S, Ennis E, Torous J. Digital transformation of mental health services. Npj Mental Health Res. 2023;2:2731–4251. DOI: https://doi.org/10.1038/s44184-023-00033-y
Shah SIH, Naeem M, Paragliola G, Coronato A, Pech- Enizkiy M. An ai-empowered infrastructure for risk prevention during medical examination. Expert Syst Appl. 2023;2:120048. doi:10.1016/j.eswa.2023.120048 DOI: https://doi.org/10.1016/j.eswa.2023.120048
Ge S, Zhu Z, Wu B, McConnell ES. Technology-based cognitive training and rehabilitation interventions for individuals with mild cognitive impairment: a systematic review. BMC Geriatr. 2018; 1–19. doi:10.1186/s12877-018-0893-1 DOI: https://doi.org/10.1186/s12877-018-0893-1
Latreche A, Kelaiaia R, Chemori A, Kerboua A. Reliability and validity analysis of mediapipe-based measurement system for some human rehabilitation motions. Measurement. 2023;:112826. doi:10.1016/j.measurement.2023.112826 DOI: https://doi.org/10.1016/j.measurement.2023.112826
Stasolla F, Di Gioia M. Combining reinforcement learning and virtual reality in mild neurocognitive impairment: a new usability assessment on patients and caregivers. Front Aging Neurosci. 2023;. doi:10.3389/fnagi.2023.1189498 DOI: https://doi.org/10.3389/fnagi.2023.1189498
Figliano G, Manzi F, Tacci AL, Marchetti A, Massaro D. Ageing society and the challenge for social robotics: a systematic review of socially assistive robotics for mci patients. PLoS One. 2023;):e0293324. doi:10.1371/journal.pone.0293324 DOI: https://doi.org/10.1371/journal.pone.0293324
Palestra G, Pino O. Detecting emotions during a memory training assisted by a social robot for individuals with mild cognitive impairment (mci). Multimedia Tools Appl. 2020; 35 829–35 844. doi:10.1007/s11042-020-10092-4 DOI: https://doi.org/10.1007/s11042-020-10092-4
Kim GH, Jeon S, Im K, et al. Structural brain changes after traditional and robot-assisted multi-domain cognitive training in community-dwelling healthy elderly. PLoS One. 2015; e0123251. doi:10.1371/journal.pone.0123251 DOI: https://doi.org/10.1371/journal.pone.0123251
Takayanagi K, Kirita T, Shibata T. Comparison of verbal and emotional responses of elderly people with mild/moderate dementia and those with severe dementia in responses to seal robot, paro. Front Aging Neurosci. 2014;:257. doi:10.3389/fnagi.2014.00257 DOI: https://doi.org/10.3389/fnagi.2014.00257
Mitchell J, Shirota C, Clanchy K. Factors that influence the adoption of rehabilitation technologies: a multi-disciplinary qualitative exploration. J Neuroeng Rehabil. 2023;):1–7. doi:10.1186/s12984-023-01194-9 DOI: https://doi.org/10.1186/s12984-023-01194-9
Kerr A, Grealy MA, Kuschmann A, Rutherford R, Rowe P. A co-creation centre for accessible rehabilitation technology. Front Rehabil Sci. 2022; doi:10.3389/fresc.2021.820929 DOI: https://doi.org/10.3389/fresc.2021.820929
Myszczynska MA, Ojamies PN, Lacoste AM, et al. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat Rev Neurol. 2020;):440–456. doi:10.1038/s41582-020-0377-8 DOI: https://doi.org/10.1038/s41582-020-0377-8
Stolarz M, Mitrevski A, Wasil M, Plo¨ger PG. Personalized behaviour models: a survey focusing on autism therapy applications. arXiv preprint arXiv. 2205;2022:8975.
Irazoki E, Contreras-Somoza LM, Toribio-Guzma´n JM, Jenaro- R´ıo C, Van der Roest H, Franco-Mart´ın MA. Technologies for cognitive training and cognitive rehabilitation for people with mild cognitive impairment and dementia. a systematic review. Frontiers in Psychology. 2020;:648. doi:10.3389/fpsyg.2020.00648 DOI: https://doi.org/10.3389/fpsyg.2020.00648
Mohebbi A. Human-robot interaction in rehabilitation and assistance: a review. Curr Rob Rep. 2020;:131–144. doi:10.1007/s43154-020-00015-4 DOI: https://doi.org/10.1007/s43154-020-00015-4
Channa A, Popescu N, Ciobanu V. Wearable solutions for patients with Parkinson’s disease and neurocognitive disorder: a sys- tematic review. Sensors. 2020; 2713. doi:10.3390/s20092713 DOI: https://doi.org/10.3390/s20092713
Moher D, Liberati A, Tetzlaff J, Altman DG. Research methods & reporting-preferred reporting items for systematic reviews and meta-analyses: the prisma statement-David Moher and colleagues introduce prisma, an update of the quorom guidelines for reporting systematic reviews and meta-analyses. BMJ. 2009;338(7716):332. DOI: https://doi.org/10.1371/journal.pmed.1000097
Rutkowska A. Telemedicine interventions as an attempt to improve the mental health of populations during the covid-19 pandemic—a narrative review. Int J Environ Res Public Health. 2022; 14945. doi:10.3390/ijerph192214945 DOI: https://doi.org/10.3390/ijerph192214945
Gerłowska J, Furtak-Niczyporuk M, Rejdak K. Robotic assis- tance for people with dementia: a viable option for the future? Exp Rev Med Dev. 2020; 507–518. doi:10.1080/17434440.2020.1770592 DOI: https://doi.org/10.1080/17434440.2020.1770592
Fuentes A, Deotto A, Desrocher M, deVeber G, Westmacott R. Determinants of cognitive outcomes of perinatal and childhood stroke: a review. Child Neuropsychol. 2016; 1–38. doi:10.1080/09297049.2014.969694 DOI: https://doi.org/10.1080/09297049.2016.1205008
Perez DL, LaFrance WC. Nonepileptic seizures: an updated review. CNS Spect. 2016;):239–246. doi:10.1017/S109285291600002X DOI: https://doi.org/10.1017/S109285291600002X
Krasny-Pacini A. “Single-Case Experimental Designs for Child Neuro- Logical Rehabilitation and Developmental Disability Research,” Develop- Mental Medicine & Child. Neurology; 2023. DOI: https://doi.org/10.1111/dmcn.15513
Yi Y, Hu Y, Cui M, Wang C, Wang J. Effect of virtual reality exercise on interventions for patients with Alzheimer’s disease: a systematic review. Frontiers in Psychiatry. 2022;:1062162. doi:10.3389/fpsyt.2022.1062162 DOI: https://doi.org/10.3389/fpsyt.2022.1062162
Yao Z, Wang H, Yan W, et al. Artificial intelligence-based diagnosis of Alzheimer’s disease with brain MRI images. Eur. J. Radiol. 2023;110934. doi:10.1016/j.ejrad.2023.110934 DOI: https://doi.org/10.1016/j.ejrad.2023.110934
Shirwaikar RD, Sarwari I, Najam M, Shama H. “Has machine learning enhanced the diagnosis of autism spectrum disorder? Crit Rev Biomed Eng. 2023;51:1. DOI: https://doi.org/10.1615/CritRevBiomedEng.v51.i1.10
Yen JM, Lim JH. A clinical perspective on bespoke sensing mechanisms for remote monitoring and rehabilitation of neurological diseases: scoping review. Sensors. 2023; 536. doi:10.3390/s23010536 DOI: https://doi.org/10.3390/s23010536
Surianarayanan C, Lawrence JJ, Chelliah PR, Prakash E, Hewage C. Convergence of artificial intelligence and neuroscience towards the diagnosis of neurological disorders—a scoping review. Sensors. 2023;):3062. doi:10.3390/s23063062 DOI: https://doi.org/10.3390/s23063062
Bhattarai K, Rajaganapathy S, Das T, et al. Using artificial intelligence to learn optimal regimen plan for Alzheimer’s disease. J Am Med Inf Assoc. 2023; 1645–1656. doi:10.1093/jamia/ocad135 DOI: https://doi.org/10.1093/jamia/ocad135
Kashif M, Ahmad A, Bandpei MAM, et al. Systematic review of the application of virtual reality to improve balance, gait and motor function in patients with Parkinson’s disease. Medicine. 2022; e29212. doi:10.1097/MD.0000000000029212 DOI: https://doi.org/10.1097/MD.0000000000029212
Moreno-Ligero M, Lucena-Anton D, Salazar A, Failde I, Moral-Munoz JA. mhealth impact on gait and dynamic balance outcomes in neurorehabilitation: systematic review and meta-analysis. J Med Syst. 2023; 75. doi:10.1007/s10916-023-01963-y DOI: https://doi.org/10.1007/s10916-023-01963-y
Maggio MG, Luca A, Calabro` RS, Drago F, Nicoletti A. Can mobile health apps with smartphones and tablets be the new frontier of cognitive rehabilitation in older individuals? A narrative review of a growing field. Neurol Sci. 2023;2023:1–9. DOI: https://doi.org/10.1007/s10072-023-07045-8
Piras F, Piras F, Orfei MD, Caltagirone C, Spalletta G. Self- awareness in mild cognitive impairment: quantitative evidence from systematic review and meta-analysis. Neurosci Biobehav Rev. 2016:90–107. doi:10.1016/j.neubiorev.2015.10.002 DOI: https://doi.org/10.1016/j.neubiorev.2015.10.002
Chung CS, Pollock A, Campbell T, Durward BR, Hagen S. Cognitive rehabilitation for executive dysfunction in adults with stroke or other adult non-progressive acquired brain damage. Cochrane Database Syst Rev. 2013;). doi:10.1002/14651858.CD008391.pub2 DOI: https://doi.org/10.1002/14651858.CD008391.pub2
Radanliev P, De Roure D, Novitzky P, Sluganovic I. Ac- cessibility and inclusiveness of new information and communication technologies for disabled users and content creators in the metaverse. Disabil Rehabil. 2023;2023:1–15. DOI: https://doi.org/10.31224/3150
Modi N, Singh J. A survey of research trends in assistive technologies using information modelling techniques. Disabil Rehabil. 2022; 605–623. doi:10.1080/17483107.2020.1817992 DOI: https://doi.org/10.1080/17483107.2020.1817992
Narad ME, Shultz EL, Kurowski BG, et al. Technology-assisted rehabilitation interventions following pediatric brain injury. J Neuros Sci. 2018; 187. doi:10.23736/S0390-5616.17.04277-1 DOI: https://doi.org/10.23736/S0390-5616.17.04277-1
Rodriguez R. How learning works: seven research-based principles for smart teaching [review]/Susan A. Ambrose, Michael W. Bridges, Marsha C. Lovett, Michele DiPietro, and Marie K. Norman. J Appl Chris Lead. 2011;5(2):106–107.
Khanzode KCA, Sarode RD. Advantages and disadvantages of artificial intelligence and machine learning: a literature review. Internat J Lib Inform Sci. 2020;9(1):3.
Naeem M, Rizvi STH, Coronato A. A gentle introduction to reinforcement learning and its application in different fields. IEEE Access. 2020;:209 320–209 344. doi:10.1109/ACCESS.2020.3038605 DOI: https://doi.org/10.1109/ACCESS.2020.3038605
Andriella A, Torras C, Alenya` G. Cognitive system framework for brain-training exercise based on human-robot interaction. Cogni Comput. 2020;:793–810. doi:10.1007/s12559-019-09696-2 DOI: https://doi.org/10.1007/s12559-019-09696-2
Kotu V, Deshpande B. Chapter 10 - deep learning. In: Kotu V, Deshpande B, editors. Data Science. Morgan Kaufmann; 2019:307–342. DOI: https://doi.org/10.1016/B978-0-12-814761-0.00010-1
Kirtas M, Tsampazis K, Tosidis P, Passalis N, Tefas A. Chapter 21 - deep learning for robotics examples using opendr. In: Iosifidis A, Tefas A, editors. Deep Learning for Robot Perception and Cognition. Academic Press; 2022:579–596. DOI: https://doi.org/10.1016/B978-0-32-385787-1.00026-9
Rathnayaka MH, Watawala WK, Manamendra MG, Silva SR, Kasthurirathna D, Jayalath T. Cognitive rehabilitation based personalized solution for dementia patients using reinforcement learning. In: 2021 IEEE International Systems Confer- ence (SysCon); 2021:1–6. DOI: https://doi.org/10.1109/SysCon48628.2021.9447133
Zini F, Le Piane F, Gaspari M. Adaptive cognitive training with reinforcement learning. ACM Trans. Interact. Intell. Syst. 2022; 1–29. doi:10.1145/3476777 DOI: https://doi.org/10.1145/3476777
Tang F, Lin K, Uchendu I, Dodge H, Zhou J. Improving mild cognitive impairment prediction via reinforcement learning and dialogue simulation; 2018.
Kurniawan Y, Christian W, Anwar N. Designing mobile applica- tions to support learning from home for children with autism spectrum disorder. In: Proceedings of the 2023 4th International Conference on Education Development and Studies; 2023:1–6. DOI: https://doi.org/10.1145/3591139.3591148
Ntalindwa T, Nduwingoma M, Karangwa E, Soron TR, Uwor- Wabayeho A, Uwineza A. Development of a mobile app to improve numeracy skills of children with autism spectrum disorder: participatory design and usability study. JMIR Pediat Par. 2021; e21471. doi:10.2196/21471 DOI: https://doi.org/10.2196/21471
Snoun A, Bouchrika T, Jemai O. Deep-learning-based human activity recognition for Alzheimer’s patients’ daily life activities as- sistance. Neural Comput Appl. 2022; 1–26. doi:10.1007/s00521-022-07048-0 DOI: https://doi.org/10.1007/s00521-022-07883-1
Munteanu D, Bejan C, Munteanu N, et al. Deep-learning-based system for assisting people with alzheimerrsquo; s disease. Electronics. 2022; 3229. doi:10.3390/electronics11193229 DOI: https://doi.org/10.3390/electronics11193229
Nasri N, Lo´pez-Sastre RJ, Pacheco-da Costa S, et al. Assistive robot with an ai-based application for the reinforcement of activities of daily living: technical validation with users affected by neurodevelopmental disorders. Appl Sci. 2022,9566. doi:10.3390/app12199566 DOI: https://doi.org/10.3390/app12199566
Brown VM, Zhu L, Solway A, et al. Reinforcement learning disruptions in individuals with depression and sensitivity to symptom change following cognitive behavioral therapy. JAMA Psychiatry. 2021; 1113–1122. doi:10.1001/jamapsychiatry.2021.1844 DOI: https://doi.org/10.1001/jamapsychiatry.2021.1844
Bernini S, Panzarasa S, Sinforiani E, et al. Homecore for telerehabilitation in mild or major neurocognitive disorders: a study protocol for a randomized controlled trial. Front Neurol. 2021; doi:10.3389/fneur.2021.752830 DOI: https://doi.org/10.3389/fneur.2021.752830
Merlo G, Chifari A, Chiazzese G, et al.The behave application as a tool to monitor inclusive interventions for subjects with neurode- velopmental disorders. Frontiers in Psychology. 2022; 943370. doi:10.3389/fpsyg.2022.943370 DOI: https://doi.org/10.3389/fpsyg.2022.943370
Nissan N, Hertz U, Shahar N, Gabay Y. Distinct reinforcement learning profiles distinguish between language and attentional neurode- velopmental disorders. Behav Br Funct. 2023; 03. doi:10.1186/s12993-023-00207-w DOI: https://doi.org/10.1186/s12993-023-00207-w
Milani S, Fan Z, Gulati S, Nguyen TH, Fang F, Yadav A. In- telligent tutoring strategies for students with autism spectrum disorder: a reinforcement learning approach; 2020.
Wu J, Peng J, Li Z, et al. Multi-domain computerized cognitive training for children with intellectual developmental disorder: a randomized controlled trial. Frontiers in Psychology. 2023;13:1. DOI: https://doi.org/10.3389/fpsyg.2022.1059889
Minoofam SAH, Bastanfard A, Keyvanpour MR. Ralf: an adaptive reinforcement learning framework for teaching dyslexic students. Multimedia Tools Appl. 2022;–7721. doi:10.1007/s11042-021-11806-y DOI: https://doi.org/10.1007/s11042-021-11806-y
Liu Q, Vaci N, Koychev I, et al. Personalised treatment for cognitive impairment in dementia: development and validation of an artificial intelligence model. BMC Med. 20221–12. doi:10.1186/s12916-022-02250-2 DOI: https://doi.org/10.1186/s12916-022-02250-2
Diaz Baquero AA, Franco-Mart´ın MA, Parra Vidales E, et al. The effec- tiveness of gradior: a neuropsychological rehabilitation program for people with mild cognitive impairment and mild dementia. results of a randomized controlled trial after 4 and 12 months of treatment. J Alzheimers Dis. 2022; 711–727. doi:10.3233/JAD-215350 DOI: https://doi.org/10.3233/JAD-215350
Caˆmara J, Ferreira R, Teixeira L, et al. Efficacy of adaptive cognitive training through desktop virtual reality and paper-and-pencil in the treatment of mental and behavioral disorders. Virtual Reality. 2023;–306. doi:10.1007/s10055-021-00559-6 DOI: https://doi.org/10.1007/s10055-021-00559-6
Scha¨ttin A, Pickles J, Flagmeier D, et al. De- velopment of a novel home-based exergame with on-body feedback: usability study. JMIR Seri Games. 2022; e38703. doi:10.2196/38703 DOI: https://doi.org/10.2196/38703
Wright JH, Owen J, Eells TD, et al. Effect of computer-assisted cognitive behavior therapy vs usual care on depression among adults in primary care: a randomized clinical trial. JAMA Network Open. 2022; e2 146 716–e2 146 716. doi:10.1001/jamanetworkopen.2021.46716 DOI: https://doi.org/10.1001/jamanetworkopen.2021.46716
Newman MG, Jacobson NC, Rackoff GN, Bell MJ, Taylor CB. A randomized controlled trial of a smartphone-based application for the treatment of anxiety. Psychother Res. 2021;–454. doi:10.1080/10503307.2020.1790688 DOI: https://doi.org/10.1080/10503307.2020.1790688
Chen L, Lin L, Weizhou J, Lin S, Lin W. The research of cognitive rehabilitation training system for ADHD children. In: Proceedings of the 2020 11th International Conference on E- Education, E-Business, E-Management, and E-Learning, ser. IC4E’ 20. New York, NY, USA: Association for Computing Machinery; 2020:422–425. doi:10.1145/3377571.3377617 DOI: https://doi.org/10.1145/3377571.3377617
Pedroli E, Mancuso V, Stramba-Badiale C, et al. Brain m-app’s structure and usability: a new application for cognitive rehabilitation at home. Front Human Neurosci. 2022; doi:10.3389/fnhum.2022.898633 DOI: https://doi.org/10.3389/fnhum.2022.898633
Kamnardsiri T, Phirom K, Boripuntakul S, Sungkarat S. An interactive physical-cognitive game-based training system using Kinect for older adults: development and usability study. JMIR Seri Games. 2021; e27848. doi:10.2196/27848 DOI: https://doi.org/10.2196/preprints.27848
Gonc¸alves HIM, da Silva FO. Cognitive rehabilitation: a comparison model of a digital environment based on serious games and the traditional methods. Procedia Comput Sci. 2023; 1333–1340. doi:10.1016/j.procs.2023.01.418 DOI: https://doi.org/10.1016/j.procs.2023.01.418
Clare L, Kudlicka A, Collins R, et al. Implementing a home-based personalised cognitive rehabilitation intervention for people with mild-to-moderate dementia: great into practice. BMC Geriatr. 2023; 1–17. doi:10.1186/s12877-022-03705-0 DOI: https://doi.org/10.1186/s12877-022-03705-0
Swinnen N, de Bruin ED, Dumoulin C, et al. The vital stepping exergame prototype for older adults with major neurocognitive disorder: a usability study. Front Aging Neurosci. 2021;. doi:10.3389/fnagi.2021.701319 DOI: https://doi.org/10.3389/fnagi.2021.701319
Published
How to Cite
Issue
Section
Copyright (c) 2024 International journal of health sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.