Sepsis: early detection, laboratory investigations, nursing interventions, and documentation process
Keywords:
Sepsis, Neonatal Sepsis, Blood Cultures, Biomarkers, Molecular Diagnostics, Nursing Interventions, Documentation, Antibiotic Resistance, Early DetectionAbstract
Background: Sepsis is a life-threatening condition resulting from infection, with significant mortality and morbidity, particularly in neonates. The diagnosis of neonatal sepsis is challenging, as clinical signs often overlap with other life-threatening conditions, and blood culture methods have low sensitivity, especially in neonates. Sepsis is associated with significant healthcare costs, and rapid, accurate diagnosis is crucial to improving patient outcomes. Aim: This article aims to explore the early detection, laboratory investigations, nursing interventions, and documentation processes for neonatal sepsis, with a focus on identifying gaps and proposing improvements to enhance clinical outcomes. Methods: A comprehensive review of current diagnostic methods for neonatal sepsis, including blood cultures, biomarkers, and emerging diagnostic technologies, was conducted. The analysis includes the limitations of conventional diagnostic approaches, the role of nursing interventions in early detection, and the importance of accurate documentation in the management of neonatal sepsis. Results: Traditional blood culture methods are limited by slow results, low sensitivity, and the emergence of antibiotic-resistant organisms. Biomarkers like C-reactive protein (CRP) and procalcitonin (PCT) show promise but lack sufficient accuracy for early sepsis detection. Recent advances in molecular diagnostic technologies may significantly reduce diagnostic delays and improve pathogen identification, allowing for more targeted antibiotic treatment.
Downloads
References
Weinstein MP, Murphy JR, Reller LB, Lichtenstein KA. 1983. The clinical significance of positive blood cultures: a comprehensive analysis of 500 episodes of bacteremia and fungemia in adults. II. Clinical observations, with special reference to factors influencing prognosis. Rev Infect Dis 5:54–70. DOI: https://doi.org/10.1093/clinids/5.1.54
Lee C-C, Chen S-Y, Chang I-J, Chen S-C, Wu S-C. 2007. Comparison of clinical manifestations and outcome of community-acquired bloodstream infections among the oldest old, elderly, and adult patients. Medicine (Baltimore) 86:138–144. DOI: https://doi.org/10.1097/MD.0b013e31806a754c
Weinstein MP, Towns ML, Quartey SM, Mirrett S, Reimer LG, Parmigiani G, Reller LB. 1997. The clinical significance of positive blood cultures in the 1990s: a prospective comprehensive evaluation of the microbiology, epidemiology, and outcome of bacteremia and fungemia in adults. Clin Infect Dis 24:584–602. DOI: https://doi.org/10.1093/clind/24.4.584
Elixhauser A, Friedman B, Stranges E. 2011. Septicemia in US hospitals, 2009. Agency for Healthcare Research and Quality, Rockville, MD.
Buehler SS, Madison B, Snyder SR, Derzon JH, Cornish NE, Saubolle MA, Weissfeld AS, Weinstein MP, Liebow EB, Wolk DM. 2016. Effectiveness of practices to increase timeliness of providing targeted therapy for inpatients with bloodstream infections: a laboratory medicine best practices systematic review and meta-analysis. Clin Microbiol Rev 29:59–103. DOI: https://doi.org/10.1128/CMR.00053-14
Novosad SA, Sapiano MRP, Grigg C, Lake J, Robyn M, Dumyati G, Felsen C, Blog D, Dufort E, Zansky S, Wiedeman K, Avery L, Dantes RB, Jernigan JA, Magill SS, Fiore A, Epstein L. 2016. Vital signs. Epidemiology of sepsis: prevalence of health care factors and opportunities for prevention. MMWR Morb Mortal Wkly Rep 65:864–869. DOI: https://doi.org/10.15585/mmwr.mm6533e1
Torio CM, Moore BJ. 2016. National inpatient hospital costs: the most expensive conditions by pay, 2011. Agency for Healthcare Research and Quality, Rockville, MD.
Epstein L, Dantes R, Magill S, Fiore A. 2016. Varying estimates of sepsis mortality using death certificates and administrative codes—United States, 1999-2014. MMWR Morb Mortal Wkly Rep 65:342–345. DOI: https://doi.org/10.15585/mmwr.mm6513a2
Klevens RM, Edwards JR, Gaynes RP. 2008. The impact of antimicrobial-resistant, health care-associated infections on mortality in the United States. Clin Infect Dis 47:927–930. DOI: https://doi.org/10.1086/591698
Coburn B, Morris AM, Tomlinson G, Detsky AS. 2012. Does this adult patient with suspected bacteremia require blood cultures? JAMA 308:502–511. DOI: https://doi.org/10.1001/jama.2012.8262
Kiser C, Nawab U, McKenna K, Aghai ZH. 2014. Role of guidelines on length of therapy in chorioamnionitis and neonatal sepsis. Pediatrics 133:992–998. DOI: https://doi.org/10.1542/peds.2013-2927
Patel SJ, Saiman L. 2012. Principles and strategies of antimicrobial stewardship in the neonatal intensive care unit. Semin Perinatol 36:431–436. DOI: https://doi.org/10.1053/j.semperi.2012.06.005
Heron M. 2013. Deaths: leading causes for 2010. Natl Vital Stat Rep 62(6):1–97.
Romero R, Dey SK, Fisher SJ. 2014. Preterm labor: one syndrome, many causes. Science 345:760–765. DOI: https://doi.org/10.1126/science.1251816
Kemp MW. 2014. Preterm birth, intrauterine infection, and fetal inflammation. Front Immunol 5:574. DOI: https://doi.org/10.3389/fimmu.2014.00574
Payne MS, Bayatibojakhi S. 2014. Exploring preterm birth as a polymicrobial disease: an overview of the uterine microbiome. Front Immunol 5:595. DOI: https://doi.org/10.3389/fimmu.2014.00595
Storro O, Avershina E, Rudi K. 2013. Diversity of intestinal microbiota in infancy and the risk of allergic disease in childhood. Curr Opin Allergy Clin Immunol 13:257–262. DOI: https://doi.org/10.1097/ACI.0b013e328360968b
Saari A, Virta LJ, Sankilampi U, Dunkel L, Saxen H. 2015. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics 135:617–626. DOI: https://doi.org/10.1542/peds.2014-3407
Tripathi N, Cotten CM, Smith PB. 2012. Antibiotic use and misuse in the neonatal intensive care unit. Clin Perinatol 39:61–68. DOI: https://doi.org/10.1016/j.clp.2011.12.003
Patel SJ, Oshodi A, Prasad P, Delamora P, Larson E, Zaoutis T, Paul DA, Saiman L. 2009. Antibiotic use in neonatal intensive care units and adherence with Centers for Disease Control and Prevention 12 Step Campaign To Prevent Antimicrobial Resistance. Pediatr Infect Dis J 28:1047–1051. DOI: https://doi.org/10.1097/INF.0b013e3181b12484
Verani JR, McGee L, Schrag SJ. 2010. Prevention of perinatal group B streptococcal disease—revised guidelines from CDC, 2010. MMWR Recommend Rep 59:1–36.
Fauci AS, Marston HD. 2014. The perpetual challenge of antimicrobial resistance. JAMA 311:1853–1854. DOI: https://doi.org/10.1001/jama.2014.2465
Ventola CL. 2015. The antibiotic resistance crisis. Part 1: causes and threats. P T 40:277–283.
Greenwood C, Morrow AL, Lagomarcino AJ, Altaye M, Taft DH, Yu Z, Newburg DS, Ward DV, Schibler KR. 2014. Early empiric antibiotic use in preterm infants is associated with lower bacterial diversity and higher relative abundance of Enterobacter. J Pediatr 165:23–29. DOI: https://doi.org/10.1016/j.jpeds.2014.01.010
Bates DW, Cook EF, Goldman L, Lee TH. 1990. Predicting bacteremia in hospitalized patients. A prospectively validated model. Ann Intern Med 113:495–500. DOI: https://doi.org/10.7326/0003-4819-113-7-495
Roth A, Wiklund AE, Pålsson AS, Melander EZ, Wullt M, Cronqvist J, Walder M, Sturegård E. 2010. Reducing blood culture contamination by a simple informational intervention. J Clin Microbiol 48:4552–4558. DOI: https://doi.org/10.1128/JCM.00877-10
Stryjewski ME, Kanafani ZA, Chu VH, Pappas PA, Harding T, Drew LA, Benjamin DK, Reller LB, Lee BA, Corey GR, Fowler VG. 2009. Staphylococcus aureus bacteremia among patients with health care-associated fever. Am J Med 122:281.e2–289.e2. DOI: https://doi.org/10.1016/j.amjmed.2008.09.040
Riedel S, Carroll KC. 2016. Early identification and treatment of pathogens in sepsis. Clin Chest Med 37:191–207. DOI: https://doi.org/10.1016/j.ccm.2016.01.018
Riedel S, Carroll KC. 2013. Laboratory detection of sepsis. Clin Lab Med 33:413–437. DOI: https://doi.org/10.1016/j.cll.2013.03.006
Blackburn RM, Muller-Pebody B, Planche T, Johnson A, Hopkins S, Sharland M, Kennea N, Heath PT. 2012. Neonatal sepsis—many blood samples, few positive cultures: implications for improving antibiotic prescribing. Arch Dis Child Fetal Neonatal Ed 97:F487–F488. DOI: https://doi.org/10.1136/archdischild-2012-302261
Ottolini MC, Lundgren K, Mirkinson LJ, Cason S, Ottolini MG. 2003. Utility of complete blood count and blood culture screening to diagnose neonatal sepsis in the asymptomatic at risk newborn. Pediatr Infect Dis J 22:430–434. DOI: https://doi.org/10.1097/01.inf.0000068206.11303.dd
Weston EJ, Pondo T, Lewis MM, Martell-Cleary P, Morin C, Jewell B, Daily P, Apostol M, Petit S, Farley M, Lynfield R, Reingold A, Hansen NI, Stoll BJ, Shane AL, Zell E, Schrag SJ. 2011. The burden of invasive early-onset neonatal sepsis in the United States, 2005-2008. Pediatr Infect Dis J 30:937–941. DOI: https://doi.org/10.1097/INF.0b013e318223bad2
Edmond K, Zaidi A. 2010. New approaches to preventing, diagnosing, and treating neonatal sepsis. PLoS Med 7:e1000213. DOI: https://doi.org/10.1371/journal.pmed.1000213
Qazi SA, Stoll BJ. 2009. Neonatal sepsis: a major global public health challenge. Pediatr Infect Dis J 28:S1–S2. DOI: https://doi.org/10.1097/INF.0b013e31819587a9
Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut J-F, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent J-L. 2008. Surviving Sepsis campaign. International guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med 34:17–60. DOI: https://doi.org/10.1007/s00134-007-0934-2
Kollef MH, Sherman G, Ward S, Fraser VJ. 1999. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 115:462–474. DOI: https://doi.org/10.1378/chest.115.2.462
Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A, Jimenez-Jimenez FJ, Perez-Paredes C, Ortiz-Leyba C. 2003. Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit Care Med 31:2742–2751. DOI: https://doi.org/10.1097/01.CCM.0000098031.24329.10
Valles J, Rello J, Ochagavia A, Garnacho J, Alcala MA. 2003. Community-acquired bloodstream infection in critically ill adult patients: impact of shock and inappropriate antibiotic therapy on survival. Chest 123:1615–1624. DOI: https://doi.org/10.1378/chest.123.5.1615
Weiss SL, Fitzgerald JC, Balamuth F, Alpern ER, Lavelle J, Chilutti M, Grundmeier R, Nadkarni VM, Thomas NJ. 2014. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. Crit Care Med 42:2409–2417. DOI: https://doi.org/10.1097/CCM.0000000000000509
Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, Dodek P, Wood G, Kumar A, Simon D, Peters C, Ahsan M, Chateau D. 2009. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 136:1237–1248. DOI: https://doi.org/10.1378/chest.09-0087
Singer M. 2017. Antibiotics for sepsis: does each hour really count, or is it incestuous amplification? Am J Respir Crit Care Med 196:800–802. DOI: https://doi.org/10.1164/rccm.201703-0621ED
Benitz WE. 2010. Adjunct laboratory tests in the diagnosis of early-onset neonatal sepsis. Clin Perinatol 37:421–438. DOI: https://doi.org/10.1016/j.clp.2009.12.001
Caliendo AM, Gilbert DN, Ginocchio CC, Hanson KE, May L, Quinn TC, Tenover FC, Alland D, Blaschke AJ, Bonomo RA, Carroll KC, Ferraro MJ, Hirschhorn LR, Joseph WP, Karchmer T, MacIntyre AT, Reller LB, Jackson AF. 2013. Better tests, better care: improved diagnostics for infectious diseases. Clin Infect Dis 57:S139–S170. DOI: https://doi.org/10.1093/cid/cit578
Chin CD, Linder V, Sia SK. 2007. Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 7:41–57. DOI: https://doi.org/10.1039/B611455E
Ilstrup DM, Washington JA, II. 1983. The importance of volume of blood cultured in the detection of bacteremia and fungemia. Diagn Microbiol Infect Dis 1:107–110. DOI: https://doi.org/10.1016/0732-8893(83)90039-1
Connell TG, Rele M, Cowley D, Buttery JP, Curtis N. 2007. How reliable is a negative blood culture result? Volume of blood submitted for culture in routine practice in a children's hospital. Pediatrics 119:891–896. DOI: https://doi.org/10.1542/peds.2006-0440
Mermel LA, Maki DG. 1993. Detection of bacteremia in adults: consequences of culturing an inadequate volume of blood. Ann Intern Med 119:270–272. DOI: https://doi.org/10.7326/0003-4819-119-4-199308150-00003
Bhattacharya S, Rosenberg AF, Peterson DR, Grzesik K, Baran AM, Ashton JM, Gill SR, Corbett AM, Holden-Wiltse J, Topham DJ, Walsh EE, Mariani TJ, Falsey AR. 2017. Transcriptomic biomarkers to discriminate bacterial from nonbacterial infection in adults hospitalized with respiratory illness. Sci Rep 7:6548. DOI: https://doi.org/10.1038/s41598-017-06738-3
Ramilo O, Allman W, Chung W, Mejias A, Ardura M, Glaser C, Wittkowski KM, Piqueras B, Banchereau J, Palucka AK, Chaussabel D. 2007. Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood 109:2066–2077. DOI: https://doi.org/10.1182/blood-2006-02-002477
Blevins SM, Bronze MS. 2010. Robert Koch and the “golden age” of bacteriology. Int J Infect Dis 14:e744–e751. DOI: https://doi.org/10.1016/j.ijid.2009.12.003
Petti CA, Bhally HS, Weinstein MP, Joho K, Wakefield T, Reller LB, Carroll KC. 2006. Utility of extended blood culture incubation for isolation of Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, and Kingella organisms: a retrospective multicenter evaluation. J Clin Microbiol 44:257–259. DOI: https://doi.org/10.1128/JCM.44.1.257-259.2006
Baron EJ, Scott JD, Tompkins LS. 2005. Prolonged incubation and extensive subculturing do not increase recovery of clinically significant microorganisms from standard automated blood cultures. Clin Infect Dis 41:1677–1680. DOI: https://doi.org/10.1086/497595
Kreger BE, Craven DE, Carling PC, McCabe WR. 1980. Gram-negative bacteremia. III. Reassessment of etiology, epidemiology and ecology in 612 patients. Am J Med 68:332–343. DOI: https://doi.org/10.1016/0002-9343(80)90101-1
Bacconi A, Richmond GS, Baroldi MA, Laffler TG, Blyn LB, Carolan HE, Frinder MR, Toleno DM, Metzgar D, Gutierrez JR, Massire C, Rounds M, Kennel NJ, Rothman RE, Peterson S, Carroll KC, Wakefield T, Ecker DJ, Sampath R. 2014. Improved sensitivity for molecular detection of bacterial and candida infections in blood. J Clin Microbiol 52:3164–3174. DOI: https://doi.org/10.1128/JCM.00801-14
Opota O, Jaton K, Greub G. 2015. Microbial diagnosis of bloodstream infection: towards molecular diagnosis directly from blood. Clin Microbiol Infect 21:323–331. DOI: https://doi.org/10.1016/j.cmi.2015.02.005
Cockerill FR, III, Wilson JW, Vetter EA, Goodman KM, Torgerson CA, Harmsen WS, Schleck CD, Ilstrup DM, Washington JA, II, Wilson WR. 2004. Optimal testing parameters for blood cultures. Clin Infect Dis 38:1724–1730. DOI: https://doi.org/10.1086/421087
Riedel S, Bourbeau P, Swartz B, Brecher S, Carroll KC, Stamper PD, Dunne WM, McCardle T, Walk N, Fiebelkorn K, Sewell D, Richter SS, Beekmann S, Doern GV. 2008. Timing of specimen collection for blood cultures from febrile patients with bacteremia. J Clin Microbiol 46:1381–1385. DOI: https://doi.org/10.1128/JCM.02033-07
Towns ML, Jarvis WR, Hsueh P-R. 2010. Guidelines on blood cultures. J Microbiol Immunol Infect 43:347–349. DOI: https://doi.org/10.1016/S1684-1182(10)60054-0
CLSI. 2007. Principles and procedures for blood cultures; approved guideline. CLSI document M47-A. CLSI, Wayne, PA.
Tille P. 2015. Bailey & Scott's diagnostic microbiology, 13th ed. Mosby Elsevier, St. Louis, MO.
Garcia RA, Spitzer ED, Beaudry J, Beck C, Diblasi R, Gilleeny-Blabac M, Haugaard C, Heuschneider S, Kranz BP, McLean K, Morales KL, Owens S, Paciella ME, Torregrosa E. 2015. Multidisciplinary team review of best practices for collection and handling of blood cultures to determine effective interventions for increasing the yield of true-positive bacteremias, reducing contamination, and eliminating false-positive central line-a. Am J Infect Control 43:1222–1237. DOI: https://doi.org/10.1016/j.ajic.2015.06.030
Kellogg JA, Ferrentino FL, Goodstein MH, Liss J, Shapiro SL, Bankert DA. 1997. Frequency of low level bacteremia in infants from birth to two months of age. Pediatr Infect Dis J 16:381–385. DOI: https://doi.org/10.1097/00006454-199704000-00009
Dietzman DE, Fischer GW, Schoenknecht FD. 1974. Neonatal Escherichia coli septicemia—bacterial counts in blood. J Pediatr 85:128–130. DOI: https://doi.org/10.1016/S0022-3476(74)80308-2
Fenollar F, Raoult D. 2007. Molecular diagnosis of bloodstream infections caused by non-cultivable bacteria. Int J Antimicrob Agents 30:7–15. DOI: https://doi.org/10.1016/j.ijantimicag.2007.06.024
Riedel S, Carroll KC. 2010. Blood cultures: key elements for best practices and future directions. J Infect Chemother 16:301–316. DOI: https://doi.org/10.1007/s10156-010-0069-1
Schrag SJ, Zell ER, Lynfield R, Roome A, Arnold KE, Craig AS, Harrison LH, Reingold A, Stefonek K, Smith G, Gamble M, Schuchat A. 2002. A population-based comparison of strategies to prevent early-onset group B streptococcal disease in neonates. N Engl J Med 347:233–239. DOI: https://doi.org/10.1056/NEJMoa020205
Stoll BJ, Hansen NI, Sánchez PJ, Faix RG, Poindexter BB, Van Meurs KP, Bizzarro MJ, Goldberg RN, Frantz ID, Hale EC, Shankaran S, Kennedy K, Carlo WA, Watterberg KL, Bell EF, Walsh MC, Schibler K, Laptook AR, Shane AL, Schrag SJ, Das A, Higgins RD, Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. 2011. Early onset neonatal sepsis: the burden of group B streptococcal and E. coli disease continues. Pediatrics 127:817–826. DOI: https://doi.org/10.1542/peds.2010-2217
Cotten CM, Taylor S, Stoll B, Goldberg RN, Hansen NI, Sanchez PJ, Ambalavanan N, Benjamin DK, Jr. 2009. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics 123:58–66. DOI: https://doi.org/10.1542/peds.2007-3423
Dethlefsen L, Relman DA. 2011. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 108(Suppl):4554–4561. DOI: https://doi.org/10.1073/pnas.1000087107
Bekeris LG, Tworek JA, Walsh MK, Valenstein PN. 2005. Trends in blood culture contamination: a College of American Pathologists Q-Tracks study of 356 institutions. Arch Pathol Lab Med 129:1222–1225. DOI: https://doi.org/10.5858/2005-129-1222-TIBCCA
Zwang O, Albert RK. 2006. Analysis of strategies to improve cost effectiveness of blood cultures. J Hosp Med 1:272–276. DOI: https://doi.org/10.1002/jhm.115
Alahmadi YM, Aldeyab MA, McElnay JC, Scott MG, Darwish Elhajji FW, Magee FA, Dowds M, Edwards C, Fullerton L, Tate A, Kearney MP. 2011. Clinical and economic impact of contaminated blood cultures within the hospital setting. J Hosp Infect 77:233–236. DOI: https://doi.org/10.1016/j.jhin.2010.09.033
Segal GS, Chamberlain JM. 2000. Resource utilization and contaminated blood cultures in children at risk for occult bacteremia. Arch Pediatr Adolesc Med 154:469–473. DOI: https://doi.org/10.1001/archpedi.154.5.469
Thuler LC, Jenicek M, Turgeon JP, Rivard M, Lebel P, Lebel MH. 1997. Impact of a false positive blood culture result on the management of febrile children. Pediatr Infect Dis J 16:846–851. DOI: https://doi.org/10.1097/00006454-199709000-00006
Gander RM, Byrd L, DeCrescenzo M, Hirany S, Bowen M, Baughman J. 2009. Impact of blood cultures drawn by phlebotomy on contamination rates and health care costs in a hospital emergency department. J Clin Microbiol 47:1021–1024. DOI: https://doi.org/10.1128/JCM.02162-08
Pien BC, Sundaram P, Raoof N, Costa SF, Mirrett S, Woods CW, Reller LB, Weinstein MP. 2010. The clinical and prognostic importance of positive blood cultures in adults. Am J Med 123:819–828. DOI: https://doi.org/10.1016/j.amjmed.2010.03.021
Souvenir D, Anderson DE, Jr, Palpant S, Mroch H, Askin S, Anderson J, Claridge J, Eiland J, Malone C, Garrison MW, Watson P, Campbell DM. 1998. Blood cultures positive for coagulase-negative staphylococci: antisepsis, pseudobacteremia, and therapy of patients. J Clin Microbiol 36:1923–1926. DOI: https://doi.org/10.1128/JCM.36.7.1923-1926.1998
Lee CC, Lin WJ, Shih HI, Wu CJ, Chen PL, Lee HC, Lee NY, Chang CM, Wang LR, Ko WC. 2007. Clinical significance of potential contaminants in blood cultures among patients in a medical center. J Microbiol Immunol Infect 40:438–444.
Forrest GN, Mankes K, Jabra-Rizk MA, Weekes E, Johnson JK, Lincalis DP, Venezia RA. 2006. Peptide nucleic acid fluorescence in situ hybridization-based identification of Candida albicans and its impact on mortality and antifungal therapy costs. J Clin Microbiol 44:3381–3383. DOI: https://doi.org/10.1128/JCM.00751-06
Cunney RJ, McNamara EB, Alansari N, Loo B, Smyth EG. 1997. The impact of blood culture reporting and clinical liaison on the empiric treatment of bacteraemia. J Clin Pathol 50:1010–1012. DOI: https://doi.org/10.1136/jcp.50.12.1010
Zhan C, Miller MR. 2003. Excess length of stay, charges, and mortality attributable to medical injuries during hospitalization. JAMA 290:1868–1874. DOI: https://doi.org/10.1001/jama.290.14.1868
Dunagan WC, Woodward RS, Medoff G, Gray JL, III, Casabar E, Smith MD, Lawrenz CA, Spitznagel E. 1989. Antimicrobial misuse in patients with positive blood cultures. Am J Med 87:253–259. DOI: https://doi.org/10.1016/0002-9343(89)90604-9
Hall KK, Lyman JA. 2006. Updated review of blood culture contamination. Clin Microbiol Rev 19:788–802. DOI: https://doi.org/10.1128/CMR.00062-05
Lin L, Nonejuie P, Munguia J, Hollands A, Olson J, Dam Q, Kumaraswamy M, Rivera H, Corriden R, Rohde M, Hensler ME, Burkart MD, Pogliano J, Sakoulas G, Nizet V. 2015. Azithromycin synergizes with cationic antimicrobial peptides to exert bactericidal and therapeutic activity against highly multidrug-resistant Gram-negative bacterial pathogens. EBioMedicine 2:690–698. DOI: https://doi.org/10.1016/j.ebiom.2015.05.021
Waites KB, Canupp KC. 2001. Evaluation of BacT/ALERT system for detection of Mycoplasma hominis in simulated blood cultures. J Clin Microbiol 39:4328–4331. DOI: https://doi.org/10.1128/JCM.39.12.4328-4331.2001
Nawrot U, Kowalska-Krochmal B, Sulik-Tyszka B, Kozak M, Świętek K, Pajączkowska M, Piątkowska E, Rosiak D, Swoboda-Kopeć E. 2015. Evaluation of blood culture media for the detection of fungi. Eur J Clin Microbiol Infect Dis 34:161–167. DOI: https://doi.org/10.1007/s10096-014-2218-4
Zadroga R, Williams DN, Gottschall R, Hanson K, Nordberg V, Deike M, Kuskowski M, Carlson L, Nicolau DP, Sutherland C, Hansen GT. 2013. Comparison of 2 blood culture media shows significant differences in bacterial recovery for patients on antimicrobial therapy. Clin Infect Dis 56:790–797. DOI: https://doi.org/10.1093/cid/cis1021
Opota O, Croxatto A, Prod'hom G, Greub G. 2015. Blood culture-based diagnosis of bacteraemia: state of the art. Clin Microbiol Infect 21:313–322. DOI: https://doi.org/10.1016/j.cmi.2015.01.003
Kothari A, Morgan M, Haake DA. 2014. Emerging technologies for rapid identification of bloodstream pathogens. Clin Infect Dis 59:272–278. DOI: https://doi.org/10.1093/cid/ciu292
Afshari A, Schrenzel J, Ieven M, Harbarth S. 2012. Bench-to-bedside review: rapid molecular diagnostics for bloodstream infection—a new frontier? Crit Care 16:222. DOI: https://doi.org/10.1186/cc11202
Ecker DJ, Sampath R, Li H, Massire C, Matthews HE, Toleno D, Hall TA, Blyn LB, Eshoo MW, Ranken R, Hofstadler SA, Tang YW. 2010. New technology for rapid molecular diagnosis of bloodstream infections. Expert Rev Mol Diagn 10:399–415. DOI: https://doi.org/10.1586/erm.10.24
Published
How to Cite
Issue
Section
Copyright (c) 2018 International journal of health sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.