Enhancing dental medication management through artificial intelligence: A comprehensive review of contributions from nursing, dentistry, and pharmacy
Keywords:
Artificial Intelligence, dental medication management, convolutional neural networks, diagnostic accuracy, healthcare innovationAbstract
Background: The integration of Artificial Intelligence (AI) in healthcare, particularly in dental medication management, has the potential to enhance treatment efficacy and patient outcomes. The rising prevalence of dental diseases, coupled with a shortage of professionals, necessitates innovative solutions to improve care delivery. Methods: This review analyzes AI applications in dentistry, focusing on literature published from 2000 to 2021. Key databases, including PubMed and Web of Science, were utilized to gather studies employing AI models, particularly convolutional neural networks (CNNs), for diagnosing dental conditions and managing medication. Results: The findings indicate a significant increase in AI research within dentistry, highlighting its effectiveness in diagnostic accuracy and efficiency. AI models demonstrated high precision in identifying dental caries, periodontal diseases, and other oral health issues. Notable advancements include automated systems for radiographic analysis and clinical decision support, which have streamlined workflows and reduced the burden on dental professionals. Conclusion: AI holds transformative potential in dental medication management by facilitating accurate diagnoses and personalized treatment plans. While current applications show promise, further research is required to assess the cost-effectiveness and long-term implications of AI integration in clinical practice.
Downloads
References
Kriegeskorte, N.; Golan, T. Neural network models and deep learning. Curr. Biol. 2019, 29, R231–R236. DOI: https://doi.org/10.1016/j.cub.2019.02.034
Pessoa, L. Understanding brain networks and brain organization. Phys. Life Rev. 2014, 11, 400–435. DOI: https://doi.org/10.1016/j.plrev.2014.03.005
Kalappanavar, A.; Sneha, S.; Annigeri, R.G. Artificial intelligence: A dentist’s perspective. J. Med. Radiol. Pathol. Surg. 2018, 5, 2–4. DOI: https://doi.org/10.15713/ins.jmrps.123
Park, W.J.; Park, J.B. History and application of artificial neural networks in dentistry. Eur. J. Dent. 2018, 12, 594–601. DOI: https://doi.org/10.4103/ejd.ejd_325_18
Righolt, A.J.; Jevdjevic, M.; Marcenes, W.; Listl, S. Global-, Regional-, and Country-Level Economic Impacts of Dental Diseases in 2015. J. Dent. Res. 2018, 97, 501–507. DOI: https://doi.org/10.1177/0022034517750572
Schwendicke, F.; Samek, W.; Krois, J. Artificial Intelligence in Dentistry: Chances and Challenges. J. Dent. Res. 2020, 99, 769–774.
Shan, T.; Tay, F.R.; Gu, L. Application of Artificial Intelligence in Dentistry. J. Dent. Res. 2021, 100, 232–244. DOI: https://doi.org/10.1177/0022034520969115
Schwendicke, F.; Singh, T.; Lee, J.H.; Gaudin, R.; Chaurasia, A.; Wiegand, T.; Uribe, S.; Krois, J. IADR e-oral health network and the ITU WHO focus group AI for Health. Artificial intelligence in dental research: Checklist for authors, reviewers, readers. J. Dent. 2021, 107, 103610. DOI: https://doi.org/10.1016/j.jdent.2021.103610
Schwendicke FA, Samek W, Krois J. Artificial intelligence in dentistry: chances and challenges. Journal of dental research. 2020 Jul;99(7):769-74. DOI: https://doi.org/10.1177/0022034520915714
Pethani, F. Promises and perils of artificial intelligence in dentistry. Aust. Dent. J. 2021, 66, 124–135. DOI: https://doi.org/10.1111/adj.12812
Khanagar, S.B.; Al-Ehaideb, A.; Maganur, P.C.; Vishwanathaiah, S.; Patil, S.; Baeshen, H.A.; Sarode, S.C.; Bhandi, S. Developments, application, and performance of artificial intelligence in dentistry—A systematic review. J. Dent. Sci. 2021, 16, 508–522.
Machoy, M.E.; Szyszka-Sommerfeld, L.; Vegh, A.; Gedrange, T.; Woźniak, K. The ways of using machine learning in dentistry. Adv. Clin. Exp. Med. 2020, 29, 375–384. DOI: https://doi.org/10.17219/acem/115083
Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, Sarode SC, Bhandi S. Developments, application, and performance of artificial intelligence in dentistry–A systematic review. Journal of dental sciences. 2021 Jan 1;16(1):508-22. DOI: https://doi.org/10.1016/j.jds.2020.06.019
Rodrigues, J.A.; Krois, J.; Schwendicke, F. Demystifying artificial intelligence and deep learning in dentistry. Braz. Oral Res. 2021, 35, 094. DOI: https://doi.org/10.1590/1807-3107bor-2021.vol35.0094
Sapci AH, Sapci HA. Artificial intelligence education and tools for medical and health informatics students: systematic review. JMIR Medical Education. 2020 Jun 30;6(1):e19285. DOI: https://doi.org/10.2196/19285
Vaishya, R.; Javaid, M.; Khan, I.H.; Haleem, A. Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab. Syndr. 2020, 14, 337–339. DOI: https://doi.org/10.1016/j.dsx.2020.04.012
Mörch, C.M.; Atsu, S.; Cai, W.; Li, X.; Madathil, S.A.; Liu, X.; Mai, V.; Tamimi, F.; Dilhac, M.A.; Ducret, M. Artificial Intelligence and Ethics in Dentistry: A Scoping Review. J. Dent. Res. 2021, 100, 1452–1460. DOI: https://doi.org/10.1177/00220345211013808
Chen, H.; Zhang, K.; Lyu, P.; Li, H.; Zhang, L.; Wu, J.; Lee, C.H. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci. Rep. 2019, 9, 384. DOI: https://doi.org/10.1038/s41598-019-40414-y
Lee, J.H.; Kim, D.H.; Jeong, S.N.; Choi, S.H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J. Dent. 2018, 77, 106–111. DOI: https://doi.org/10.1016/j.jdent.2018.07.015
Casalegno, F.; Newton, T.; Daher, R.; Abdelaziz, M.; Lodi-Rizzini, A.; Schürmann, F.; Krejci, I.; Markram, H. Caries detection with near-infrared transillumination using deep learning. J. Dent. Res. 2019, 98, 1227–1233. DOI: https://doi.org/10.1177/0022034519871884
Hung M, Voss MW, Rosales MN, Li W, Su W, Xu J, Bounsanga J, Ruiz‐Negrón B, Lauren E, Licari FW. Application of machine learning for diagnostic prediction of root caries. Gerodontology. 2019 Dec;36(4):395-404.
Hung, M.; Voss, M.W.; Rosales, M.N.; Li, W.; Su, W.; Xu, J.; Bounsanga, J.; Ruiz-Negrón, B.; Lauren, E.; Licari, F.W. Application of machine learning for diagnostic prediction of root caries. Gerodontology 2019, 36, 395–404. DOI: https://doi.org/10.1111/ger.12432
Schwendicke, F.; Elhennawy, K.; Paris, S.; Friebertshauser, P.; Krois, J. Deep learning for caries lesion detection in nearinfrared light transillumination images: A pilot study. J. Dent. 2020, 92, 103260. DOI: https://doi.org/10.1016/j.jdent.2019.103260
Hiraiwa, T.; Ariji, Y.; Fukuda, M.; Kise, Y.; Nakata, K.; Katsumata, A.; Fujita, H.; Ariji, E. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofac. Radiol. 2019, 48, 20180218. DOI: https://doi.org/10.1259/dmfr.20180218
Ekert, T.; Krois, J.; Meinhold, L.; Elhennawy, K.; Emara, R.; Golla, T.; Schwendicke, F. Deep learning for the radiographic detection of apical lesions. J. Endod. 2019, 45, 917–922. DOI: https://doi.org/10.1016/j.joen.2019.03.016
Murata, M.; Ariji, Y.; Ohashi, Y.; Kawai, T.; Fukuda, M.; Funakoshi, T.; Kise, Y.; Nozawa, M.; Katsumata, A.; Fujita, H.; et al. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiol. 2019, 35, 301–307. DOI: https://doi.org/10.1007/s11282-018-0363-7
Kim, Y.; Lee, K.J.; Sunwoo, L.; Choi, D.; Nam, C.M.; Cho, J.; Kim, J.; Bae, Y.J.; Yoo, R.E.; Choi, B.S.; et al. Deep Learning in diagnosis of maxillary sinusitis using conventional radiography. Investig. Radiol. 2019, 54, 7–15. DOI: https://doi.org/10.1097/RLI.0000000000000503
Lee, J.S.; Adhikari, S.; Liu, L.; Jeong, H.G.; Kim, H.; Yoon, S.J. Osteoporosis detection in panoramic radiographs using a deep convolutional neural network-based computer-assisted diagnosis system: A preliminary study. Dentomaxillofac. Radiol. 2019, 48, 20170344. DOI: https://doi.org/10.1259/dmfr.20170344
Lee, K.S.; Jung, S.K.; Ryu, J.J.; Shin, S.W.; Choi, J. Evaluation of transfer learning with deep convolutional neural networks for screening osteoporosis in dental panoramic radiographs. J. Clin. Med. 2020, 9, 392. DOI: https://doi.org/10.3390/jcm9020392
Funakoshi, T.; Shibata, T.; Inamoto, K.; Shibata, N.; Ariji, Y.; Fukuda, M.; Nakata, K.; Ariji, E. Cone-beam computed tomography classification of the mandibular second molar root morphology and its relationship to panoramic radiographic appearance. Oral Radiol. 2021, 37, 494–501. DOI: https://doi.org/10.1007/s11282-020-00486-3
Lahoud, P.; EzEldeen, M.; Beznik, T.; Willems, H.; Leite, A.; Van Gerven, A.; Jacobs, R. Artificial intelligence for fast and accurate 3-dimensional tooth segmentation on cone-beam computed tomography. J. Endod. 2021, 47, 827–835. DOI: https://doi.org/10.1016/j.joen.2020.12.020
Zheng, Z.; Yan, H.; Setzer, F.C.; Shi, K.J.; Mupparapu, M.; Li, J. Anatomically constrained deep learning for automating dental CBCT segmentation and lesion detection. IEEE Trans. Autom. Sci. Eng. 2021, 18, 603–614. DOI: https://doi.org/10.1109/TASE.2020.3025871
Fukuda, M.; Inamoto, K.; Shibata, N.; Ariji, Y.; Yanashita, Y.; Kutsuna, S.; Nakata, K.; Katsumata, A.; Fujita, H.; Ariji, E. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol. 2019, 36, 337–343. DOI: https://doi.org/10.1007/s11282-019-00409-x
Kositbowornchai, S.; Plermkamon, S.; Tangkosol, T. Performance of an artificial neural network for vertical root fracture detection: An ex vivo study. Dent. Traumatol. 2013, 29, 151–155. DOI: https://doi.org/10.1111/j.1600-9657.2012.01148.x
Aminoshariae A, Kulild J, Nagendrababu V. Artificial intelligence in endodontics: current applications and future directions. Journal of endodontics. 2021 Sep 1;47(9):1352-7.
Aminoshariae A, Kulild J, Nagendrababu V. Artificial intelligence in endodontics: current applications and future directions. Journal of endodontics. 2021 Sep 1;47(9):1352-7. DOI: https://doi.org/10.1016/j.joen.2021.06.003
Ahmed N, Abbasi MS, Zuberi F, Qamar W, Halim MS, Maqsood A, Alam MK. Artificial intelligence techniques: analysis, application, and outcome in dentistry—a systematic review. BioMed research international. 2021;2021(1):9751564. DOI: https://doi.org/10.1155/2021/9751564
Setzer, F.C.; Shi, K.J.; Zhang, Z.; Yan, H.; Yoon, H.; Mupparapu, M.; Li, J. Artifi cial intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images. J. Endod. 2020, 46, 987–993. DOI: https://doi.org/10.1016/j.joen.2020.03.025
Orhan, K.; Bayrakdar, I.S.; Ezhov, M.; Kravtsov, A.; Özyürek, T.A. Evaluation of artifi cial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int. Endod. J. 2020, 53, 680–689. DOI: https://doi.org/10.1111/iej.13265
Kang DY, Duong HP, Park JC. Application of deep learning in dentistry and implantology. Journal of implantology and applied sciences. 2020 Sep 30;24(3):148-81. DOI: https://doi.org/10.32542/implantology.202015
Bindal, P.; Bindal, U.; Kazemipoor, M.; Jha, S.K. Hybrid machine learning approaches in viability assessment of dental pulp stem cells treated with platelet-rich concentrates on different periods. Appl. Med. Inform. 2019, 41, 93–101.
Mohan, S.P.; Ramalingam, M. Dental pulp stem cells in neuroregeneration. J. Pharm. Bioallied Sci. 2020, 12 (Suppl. S1), S60–S66. DOI: https://doi.org/10.4103/jpbs.JPBS_229_20
Jung, S.K.; Kim, T.W. New approach for the diagnosis of extractions with neural network machine learning. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 127–133. DOI: https://doi.org/10.1016/j.ajodo.2015.07.030
Joda, T.; Yeung, A.W.K.; Hung, K.; Zitzmann, N.U.; Bornstein, M.M. Disruptive Innovation in Dentistry: What It Is and What Could Be Next. J. Dent. Res. 2021, 100, 448–453. DOI: https://doi.org/10.1177/0022034520978774
Johnson, K.B.; Wei, W.Q.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021, 14, 86–93. DOI: https://doi.org/10.1111/cts.12884
Wang, F.; Preininger, A. AI in Health: State of the Art, Challenges, and Future Directions. Yearb. Med. Inform. 2019, 28, 16–26. DOI: https://doi.org/10.1055/s-0039-1677908
Zitzmann NU, Matthisson L, Ohla H, Joda T. Digital undergraduate education in dentistry: a systematic review. International journal of environmental research and public health. 2020 May;17(9):3269. DOI: https://doi.org/10.3390/ijerph17093269
Kuruoglu D, Yan M, Bustos SS, Morris JM, Alexander AE, Sharaf B. Point of care virtual surgical planning and 3D printing in facial gender confirmation surgery: a narrative review. Annals of Translational Medicine. 2021 Apr;9(7). DOI: https://doi.org/10.21037/atm-20-6369
Schulam, P.; Saria, S. Reliable decision support using counterfactual models. Adv. Neural Inf. Process Syst. 2017, 30, 1697–1708.
Dzobo, K.; Adotey, S.; Thomford, N.E.; Dzobo, W. Integrating Artificial and Human Intelligence: A Partnership for Responsible Innovation in Biomedical Engineering and Medicine. OMICS 2020, 24, 247–263. DOI: https://doi.org/10.1089/omi.2019.0038
Lee, J.H.; Kim, D.H.; Jeong, S.N. Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral Dis. 2020, 26, 152–158. DOI: https://doi.org/10.1111/odi.13223
Jeon SJ, Yun JP, Yeom HG, Shin WS, Lee JH, Jeong SH, Seo MS. Deep-learning for predicting C-shaped canals in mandibular second molars on panoramic radiographs. Dentomaxillofacial Radiology. 2021 Jul 1;50(5):20200513. DOI: https://doi.org/10.1259/dmfr.20200513
Kurt Bayrakdar, S.; Orhan, K.; Bayrakdar, I.S.; Bilgir, E.; Ezhov, M.; Gusarev, M.; Shumilov, E. A deep learning approach for dental implant planning in cone-beam computed tomography images. BMC Med. Imaging 2021, 21, 86. DOI: https://doi.org/10.1186/s12880-021-00618-z
Kuwada C, Ariji Y, Fukuda M, Kise Y, Fujita H, Katsumata A, Ariji E. Deep learning systems for detecting and classifying the presence of impacted supernumerary teeth in the maxillary incisor region on panoramic radiographs. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2020 Oct 1;130(4):464-9. DOI: https://doi.org/10.1016/j.oooo.2020.04.813
Published
How to Cite
Issue
Section
Copyright (c) 2022 International journal of health sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.