Effect of berberine in comparison to metformin on the biophysical and biochemical parameters in diabetic albino Wistar rats

https://doi.org/10.53730/ijhs.v6nS2.6256

Authors

  • Suhasini Padugupati Research Scholar Department of Biochemistry, Palamur Bio Sciences Pvt Ltd, in affiliation with Manipal Academy of Higher Education, Manipal, Karnataka, India
  • S Ramamoorthy Chief Executive Officer, Department of Toxicology, Palamur Bioscience Pvt.Ltd, Mahabubnagar, Telangana, India
  • Kumar Thangavelu Director, Department of Toxicology, Palamur Bioscience Pvt.Ltd, Mahabubnagar, Telangana, India
  • D V H S Sarma Professor and Head, Department of Biochemistry, S.V.S Medical College, Mahabubnagar, Telangana, India
  • Deepak Jamadar Statistician Cum Assistant Professor, Department of Community Medicine, Palamur Bioscience Pvt.Ltd, Mahabubnagar, Telangana, India

Keywords:

berberine (Ber), metformin (Met), streptozotocin (STZ), anti inflammatory markers, antioxidative stress markers, anti-oxidants

Abstract

Introduction: Diabetic endothelial dysfunction is accompanied by increased oxidative stress and upregulated proinflammatory and inflammatory mediators in the endothelial vasculature. Aim of this study is to investigate the effect of Berberine, a natural alkaloid, on the oxidative stress, inflammation and its anti-oxidant effect in streptozotocin diabetic rats and to compare the effectiveness of FF with that of Metformin (Met) Material & Methods: This experimental animal study was conducted at animal house. The sample size included 174 albino wistar rats divided into 3 Groups, one control groups (C) Diabetic and untreated and two test groups. T1 Diabetic and treated with metformin 75 mg/kgwt/day) and T2 (T – Diabetics treated with Berberine(Ber) 100 mg/kgwt/day), with 58 rats in each group (29 male & 29 female). All the rats were treated with streptozotocin intra peritoneally and the diabetic state was induced.  T1 group was treated with metformin 75 mg/kg/wt/day. The T2 group of rats were treated with Berberine at a dose of 100 mg/kgwt/day. Blood sample was drawn from retro orbital plexus of animals and the biophysical and biochemical parameters were tested at an interval of 3, 6 and 12-months duration.

Downloads

Download data is not yet available.

References

Unwin N, Whiting D, Gan D, Jacqmain O, Ghyoot G (Editors). IDF Diabetes Atlas, 4th edn., Brussels: International Diabetes Federation, 2009.

World Health Organization (WHO). Global Health Estimates: Deaths by Cause, Age, Sex and Country, 2000-2012. Geneva, WHO, 2014.

S. P. Gray and K. Jandeleit-Dahm, “The pathobiology of diabetic vascular complications—cardiovascular and kidney disease,” Journal of Molecular Medicine, vol. 92, no. 5, pp. 441–452, 2014. DOI: https://doi.org/10.1007/s00109-014-1146-1

Kanie, T. Matsumoto, T. Kobayashi, and K. Kamata, “Relationship between peroxisome proliferator-activated receptors (PPARα and PPARγ) and endothelium-dependent relaxation in streptozotocin-induced diabetic rats,” British Journal of Pharmacology, vol. 140, no. 1, pp. 23–32, 2003. DOI: https://doi.org/10.1038/sj.bjp.0705414

U. Bayraktutan, “Free radicals, diabetes and endothelial dysfunction,” Diabetes, Obesity and Metabolism, vol. 4, no. 4, pp. 224–238, 2002. DOI: https://doi.org/10.1046/j.1463-1326.2002.00184.x

N. Makino, T. Maeda, M. Sugano, S. Satoh, R. Watanabe, and N. Abe, “High serum TNF-α level in type 2 diabetic patients with microangiopathy is associated with eNOS downregulation and apoptosis in endothelial cells,” Journal of Diabetes and its Complications, vol. 19, no. 6, pp. 347–355, 2005 DOI: https://doi.org/10.1016/j.jdiacomp.2005.04.002

Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ, Steinberg GR. Treatment of nonalcoholic fatty liver disease: role of AMPK. Am J Physiol Endocrinol Metab. 2016; 311:E730–E740.

18. Yang X, Xu Z, Zhang C, Cai Z, Zhang J. Metformin, beyond an insulin sensitizer, targeting heart and pancreatic beta cells. Biochim Biophys Acta. 2017; 1863:1984–1990.

19. Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes. 2014; 7:241–253.

20. Lupi R, Del Guerra S, Fierabracci V, Marselli L, Novelli M, Patane G, Boggi U, Mosca F, Piro S, Del Prato S, Marchetti P. Lipotoxicity in human pancreatic islets and the protective effect of metformin. Diabetes. 2002; 51 Suppl 1:S134–137.

21. Lupi R, Del Guerra S, Tellini C, Giannarelli R, Coppelli A, Lorenzetti M, Carmellini M, Mosca F, Navalesi R, Marchetti P. The biguanide compound metformin prevents desensitization of human pancreatic islets induced by high glucose. Eur J Pharmacol. 1999; 364:205–209.

22. Pernicova I, Korbonits M. Metformin--mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014; 10:143–156.

23. Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, Jurczak MJ, Camporez JP, Lee HY, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014; 510:542–546.

24. He H, Ke R, Lin H, Ying Y, Liu D, Luo Z. Metformin, an old drug, brings a new era to cancer therapy. Cancer J. 2015; 21:70–74

Mathers CD and Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006; 3(11):e442. DOI: https://doi.org/10.1371/journal.pmed.0030442

Hundal RS, Inzucchi SE. Metformin: new understandings, new uses. Drugs. 2003; 63:1879–1894. DOI: https://doi.org/10.2165/00003495-200363180-00001

Kumar A, Ekavali, Chopra K, Mukherjee M, Pottabathini R, Dhull DK. Current knowledge and pharmacological profile of berberine: An update. Eur J Pharmacol. 2015; 761:288-297. DOI: https://doi.org/10.1016/j.ejphar.2015.05.068

Brownlee,M.The pathobiology od diabetic complications:a unifying mechanism. Diabetes.2005;54(6):1615-1625. DOI: https://doi.org/10.2337/diabetes.54.6.1615

Ogi M, Kojima S, Kuramochi M. Effect of postural change on urine volume and urinary sodium excretion in diabetic nephropathy.Am J Kidney Dis.1998;31(8):41-44. DOI: https://doi.org/10.1053/ajkd.1998.v31.pm9428450

Blickle JF, Doucet J, Lrummel T, Hannedouche T. Diabetic nephropathy in the elderly. Diabetes Metab.2007;33:44-55. DOI: https://doi.org/10.1016/S1262-3636(07)80056-5

Trinder P. Enzymatic determination of glucose in blood serum. Annals of Clinical Biochemistry. 1969;6(24) DOI: https://doi.org/10.1177/000456326900600108

DCCT Research Group (1996). The absence of a glycemic threshold for the development of long-term complications: the perspective of the Diabetes Control and Complications Trial. Diabetes 45(10), 1289–1298. DOI: https://doi.org/10.2337/diab.45.10.1289

Nathan, DM et al. (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The New England Journal of Medicine 329(14), 977–986. DOI: https://doi.org/10.1056/NEJM199309303291401

Young DS. Effects of disease on Clinical Lab. Tests, 4th ed AACC 2001.

Tietz N W et al. Clinical Guide to Laboratory Tests, 3rd ed AACC 1995.

Bowers,L.D.(1980)Clin Chem.26;551 DOI: https://doi.org/10.1093/clinchem/26.5.0551

Passing H. Bablok W.A.New Biomedical procedure for testing the equality of measurements from Two Different analytical methods.J Clin Chem Clin Biochem 1983;21:709-720. DOI: https://doi.org/10.1515/cclm.1983.21.11.709

Allain, C.C. Poon, L.S, Chan, C.S.G, Richmond, W. and Fu, P.C. Clin Chem. 1974; 20: 470-475. DOI: https://doi.org/10.1093/clinchem/20.4.470

Roeschlau P, Bernt, E. and Gruber, W.A. Clin. Chem. Clin. Biochem. 1974; 12 : 226.

McGowan ,MW et al Clin Chem 198329;538

3 F.cs.1i o An. Clin Biochem.1069 6;24-7

Barr, D.P., Russ E. M., Eder, H.A., Protein-lipid relationships in human plasma, Am. J. Med., 11;480 (1951). DOI: https://doi.org/10.1016/0002-9343(51)90183-0

Gordon, T. et al., High density lipoprotein as a protective factor against coronary heart disease, Am. J, Med., 62;707 (1977). DOI: https://doi.org/10.1016/0002-9343(77)90874-9

Castelli, W.P. et al., HDL Cholesterol and other lipids in coronary heart disease, Circulation, 55;767 (1977) DOI: https://doi.org/10.1161/01.CIR.55.5.767

Sahu S, Chawla R, Uppal B. Comparison of two methods of estimation of low density lipoprotein cholesterol, the direct versus friedewald estimation. Indian J Clin Biochem 2005;20:54 61. DOI: https://doi.org/10.1007/BF02867401

Gupta S, Verma M, Singh K. Does LDL C Estimation using anandaraja’s formula give a better agreement with direct LDL C estimation than the friedewald’s formula? Indian J Clin Biochem 2012;27:127 33. DOI: https://doi.org/10.1007/s12291-011-0186-3

Anandaraja S, Narang R, Godeswar R, Laksmy R, Talwar KK. Low density lipoprotein cholesterol estimation by a new formula in Indian population. Int J Cardiol 2005;102:117 20. DOI: https://doi.org/10.1016/j.ijcard.2004.05.009

Martin SS, Blaha MJ, Elshazly MB, Brinton EA, Toth PP, McEvoy JW, et al. Friedewald estimated versus directly measured low density lipoprotein cholesterol and treatment implications. J Am Coll Cardiol 2013;62:732 9. DOI: https://doi.org/10.1016/j.jacc.2013.01.079

Mora S, Rifai N, Buring JE, Ridker PM. Comparison of LDL cholesterol concentrations by Friedewald calculation and direct measurement in relation to cardiovascular events in 27,331 women. Clin Chem 2009;55:888 94. DOI: https://doi.org/10.1373/clinchem.2008.117929

Li et al. BMC Nephrology (2018) 19:326 DOI: https://doi.org/10.1186/s12882-018-0856-y

Erdal Demirtas , 1 ˙ Ilhan Korkmaz,1 Kıvanç Cebeciog˘lu et al. Serum TLR9 and NF-κB Biochemical Markers in Patients with Acute Pancreatitis on Admission. Emergency Medicine International Volume 2020, Article ID 1264714, 6 page DOI: https://doi.org/10.1155/2020/1264714

Cannon B., Nedergaard J. (2004) Physiol. Rev. 84, 277–359 DOI: https://doi.org/10.1152/physrev.00015.2003

. Enerbäck S. (2010) Cell Metab. 11, 248–252 DOI: https://doi.org/10.1016/j.cmet.2010.03.008

Nagla A. El-Shitanya,b,⁎ , Basma G. Eid. Icariin modulates carrageenan-induced acute inflammation through HO-1/ Nrf2 and NF-kB signaling pathways. Biomedicine & Pharmacotherapy 120 (2019) 109567 DOI: https://doi.org/10.1016/j.biopha.2019.109567

Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351–358. DOI: https://doi.org/10.1016/0003-2697(79)90738-3

M. Uchiyama, M. Mihara, Determination of malonaldehyde precursor in tissues by thiobarbituric acid test, Anal. Biochem. 86 (1978) 271–27 DOI: https://doi.org/10.1016/0003-2697(78)90342-1

Wade CR, van Rij AM. Plasma malondialdehyde, lipid peroxides, and the thiobarbituric acid reaction. Clin Chem. 1989;35:336 DOI: https://doi.org/10.1093/clinchem/35.2.336

Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186: 189–195 DOI: https://doi.org/10.1016/0003-9861(78)90479-4

M. Nishikimi, N. Appaji, K. Yagi, The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen, Biochem. Biophys. Res.Commun. 46 (1972) 849–854 DOI: https://doi.org/10.1016/S0006-291X(72)80218-3

Rossetti L, De Fronzo RA, Gharezi R, et al. Effect of metformin treatment on insulin action in diabetic rats: in vivo and in vitro correlations. Metabol. 1990;39:425–435. DOI: https://doi.org/10.1016/0026-0495(90)90259-F

Jiang D, Wang D, Zhuang X, Wang Z, Ni Y, Chen S, Sun F. Berberine increases adipose triglyceride lipase in 3T3-L1 adipocytes through the AMPK pathway. Lipids Health Dis. 2016; 15:214. DOI: https://doi.org/10.1186/s12944-016-0383-4

Zhang Z, Zhang H, Li B, Meng X, Wang J, Zhang Y, Yao S, Ma Q, Jin L, Yang J, Wang W, Ning G. Berberine activates thermogenesis in white and brown adipose tissue. Nat Commun. 2014; 5:5493 DOI: https://doi.org/10.1038/ncomms6493

Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ, Steinberg GR. Treatment of nonalcoholic fatty liver disease: role of AMPK. Am J Physiol Endocrinol Metab. 2016; 311:E730–E740. DOI: https://doi.org/10.1152/ajpendo.00225.2016

Yang X, Xu Z, Zhang C, Cai Z, Zhang J. Metformin, beyond an insulin sensitizer, targeting heart and pancreatic beta cells. Biochim Biophys Acta. 2017; 1863:1984–1990. DOI: https://doi.org/10.1016/j.bbadis.2016.09.019

Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes. 2014; 7:241–253. DOI: https://doi.org/10.2147/DMSO.S43731

Lupi R, Del Guerra S, Fierabracci V, Marselli L, Novelli M, Patane G, Boggi U, Mosca F, Piro S, Del Prato S, Marchetti P. Lipotoxicity in human pancreatic islets and the protective effect of metformin. Diabetes. 2002; 51 Suppl 1:S134–137. DOI: https://doi.org/10.2337/diabetes.51.2007.S134

Lupi R, Del Guerra S, Tellini C, Giannarelli R, Coppelli A, Lorenzetti M, Carmellini M, Mosca F, Navalesi R, Marchetti P. The biguanide compound metformin prevents desensitization of human pancreatic islets induced by high glucose. Eur J Pharmacol. 1999; 364:205–209 DOI: https://doi.org/10.1016/S0014-2999(98)00807-3

Pernicova I, Korbonits M. Metformin--mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014; 10:143–156. DOI: https://doi.org/10.1038/nrendo.2013.256

Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, Jurczak MJ, Camporez JP, Lee HY, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014; 510:542–546. DOI: https://doi.org/10.1038/nature13270

He H, Ke R, Lin H, Ying Y, Liu D, Luo Z. Metformin, an old drug, brings a new era to cancer therapy. Cancer J. 2015; 21:70–74. DOI: https://doi.org/10.1097/PPO.0000000000000103

Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism. 2008; 57:712–717. DOI: https://doi.org/10.1016/j.metabol.2008.01.013

Xia X, Yan J, Shen Y, Tang K, Yin J, Zhang Y, Yang D, Liang H, Ye J, Weng J. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS One. 2011; 6:e16556. DOI: https://doi.org/10.1371/journal.pone.0016556

Liu W, Hei Z, Nie H, Tang F, Huang H, et al. 2008. Berberine ameliorates renal injury in streptozotocin-induced diabetic rats by suppression of both oxidative stress and aldose reductase. Chin Med J, 121: 706-712. DOI: https://doi.org/10.1097/00029330-200804020-00009

Wu D, Wen W, Qi CL, Zhao RX, Lu JH, et al. 2012. Ameliorative effect of berberine on renal damage in rats with diabetes induced by high-fat diet and streptozotocin. Phytomedicine, 19: 712-718. DOI: https://doi.org/10.1016/j.phymed.2012.03.003

Brusq JM, Ancellin N, Grondin P, Guillard R, Martin S, Saintillan Y, Issandou M. Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine. J Lipid Res. 2006; 47:1281–1288. DOI: https://doi.org/10.1194/jlr.M600020-JLR200

Ge Y, Zhang Y, Li R, Chen W, Li Y, Chen G. Berberine regulated Gck, G6pc, Pck1 and Srebp-1c expression and activated AMP-activated protein kinase in primary rat hepatocytes. Int J Biol Sci. 2011; 7:673–684. DOI: https://doi.org/10.7150/ijbs.7.673

Kim WS, Lee YS, Cha SH, Jeong HW, Choe SS, Lee MR, Oh GT, Park HS, Lee KU, Lane MD, Kim JB. Berberine improves lipid dysregulation in obesity by controlling central and peripheral AMPK activity. Am J Physiol Endocrinol Metab. 2009; 296:E812-819. DOI: https://doi.org/10.1152/ajpendo.90710.2008

Koh SJ, Kim JM, Kim IK, Ko SH, Kim JS. Anti-inflammatory mechanism of metformin and its effects in intestinal inflammation and colitis-associated colon cancer. J Gastroenterol Hepatol. 2014; 29:502–510. DOI: https://doi.org/10.1111/jgh.12435

Klug-Roth D., Fridovich I., Rabani J. Pulse radiolytic investigations of superoxide catalyzed disproportionation. Mechanism for bovine superoxide dismutase. Journal of the American Chemical Society. 1973;95(9):2786–2790. DOI: https://doi.org/10.1021/ja00790a007

Published

18-04-2022

How to Cite

Padugupati, S., Ramamoorthy, S., Thangavelu, K., Sarma, D. V. H. S., & Jamadar, D. (2022). Effect of berberine in comparison to metformin on the biophysical and biochemical parameters in diabetic albino Wistar rats. International Journal of Health Sciences, 6(S2), 4998–5014. https://doi.org/10.53730/ijhs.v6nS2.6256

Issue

Section

Peer Review Articles