Comparative study between irisin and donepezil (Anticholinesterase) on cognitive functions in cases of scopolamine induced Alzheimer’s disease
Like condition in male albino rats
Keywords:
Alzheimer’s disease, donepezil, irisin, scopolamineAbstract
Introduction: Alzheimer's disease (AD) is a progressive neurological disorder. Donepezil hydrochloride is a cholinesterase inhibitor that is selective. Irisin is a 112-amino acid glycosylated protein-hormone. Objective: to compare the effect of irisin and donepezil (anticholinestrase) on cognitive function in cases of scopolamine induced Alzheimer’s disease like condition in male albino rats. Materials and methods: Fifty albino male rats of a local strain, weighing between 150 and 200 g, enrolled in this study. At room temperature, with 12-hour light/dark cycles, and with free access to running tap water and pelleted laboratory chow, the rats were kept in separate cages (5 rats per cage) for the duration of the experiment. Results: Donepezil administration achieved significant decrease in A che level in donepezil treated group, in relation to AD group, (AD+D). Irisin administration caused insignificant change in A che level in Irisin treated group in relation to AD group (AD+I). Conclusions: Irisin can reduce scopolamine-induced AD manifestations through its antiinflammatory, antioxidant and antiapoptotic effects, which were evaluated both biochemically and behavioural. Donepezil enhances memory as it is anti cholinestrase, also it has anti-inflammatory effect. Donepezil and irisin treatment potentiate each other as they act synergestically by different mechanisms to counrtact memory loss.
Downloads
References
Amaro Andrade, P., Souza Silveira, B. K., Corrêa Rodrigues, A., Oliveira da Silva, F. M., Barbosa Rosa, C. O., & Gonçalves Alfenas, R. C. (2018). Effect of exercise on concentrations of irisin in overweight individuals: A systematic review. Science & Sports, 33(2), 80-89. doi:https://doi.org/10.1016/j.scispo.2017.11.002
Asadi, Y., Gorjipour, F., Behrouzifar, S., & Vakili, A. (2018). Irisin Peptide Protects Brain Against Ischemic Injury Through Reducing Apoptosis and Enhancing BDNF in a Rodent Model of Stroke. Neurochem Res, 43(8), 1549-1560. doi:10.1007/s11064-018-2569-9
Beutler, E., & Kelly, B. M. (1963). The effect of sodium nitrite on red cell GSH. Experientia, 19, 96-97. doi:10.1007/bf02148042
Bhuvanendran, S., Kumari, Y., Othman, I., & Shaikh, M. F. (2018). Amelioration of Cognitive Deficit by Embelin in a Scopolamine-Induced Alzheimer's Disease-Like Condition in a Rat Model. Front Pharmacol, 9, 665. doi:10.3389/fphar.2018.00665
Binder, D. K., & Scharfman, H. E. (2004). Brain-derived neurotrophic factor. Growth Factors, 22(3), 123-131. doi:10.1080/08977190410001723308
Chen, B. H., Park, J. H., Lee, T. K., Song, M., Kim, H., Lee, J. C., . . . Ahn, J. H. (2018). Melatonin attenuates scopolamine-induced cognitive impairment via protecting against demyelination through BDNF-TrkB signaling in the mouse dentate gyrus. Chem Biol Interact, 285, 8-13. doi:10.1016/j.cbi.2018.02.023
Choi, S. H., Bylykbashi, E., Chatila, Z. K., Lee, S. W., Pulli, B., Clemenson, G. D., . . . Tanzi, R. E. (2018). Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model. Science, 361(6406). doi:10.1126/science.aan8821
Conde, C. A., Costa, V., & Tomaz, C. (1999). Measuring emotional memory in the elevated T-maze using a training-to-criterion procedure. Pharmacol Biochem Behav, 63(1), 63-69. doi:10.1016/s0091-3057(98)00251-2
Cutuli, D., De Bartolo, P., Caporali, P., Tartaglione, A. M., Oddi, D., D'Amato, F. R., . . . Petrosini, L. (2013). Neuroprotective effects of donepezil against cholinergic depletion. Alzheimers Res Ther, 5(5), 50. doi:10.1186/alzrt215
D'Amelio, M., & Rossini, P. M. (2012). Brain excitability and connectivity of neuronal assemblies in Alzheimer's disease: from animal models to human findings. Prog Neurobiol, 99(1), 42-60. doi:10.1016/j.pneurobio.2012.07.001
de Freitas, G. B., Lourenco, M. V., & De Felice, F. G. (2020). Protective actions of exercise-related FNDC5/Irisin in memory and Alzheimer's disease. J Neurochem, 155(6), 602-611. doi:10.1111/jnc.15039
El-Marasy, S. A., Abd-Elsalam, R. M., & Ahmed-Farid, O. A. (2018). Ameliorative Effect of Silymarin on Scopolamine-induced Dementia in Rats. Open Access Maced J Med Sci, 6(7), 1215-1224. doi:10.3889/oamjms.2018.257
Erickson, K. I., Weinstein, A. M., & Lopez, O. L. (2012). Physical activity, brain plasticity, and Alzheimer's disease. Arch Med Res, 43(8), 615-621. doi:10.1016/j.arcmed.2012.09.008
Gacar, N., Mutlu, O., Utkan, T., Komsuoglu Celikyurt, I., Gocmez, S. S., & Ulak, G. (2011). Beneficial effects of resveratrol on scopolamine but not mecamylamine induced memory impairment in the passive avoidance and Morris water maze tests in rats. Pharmacol Biochem Behav, 99(3), 316-323. doi:10.1016/j.pbb.2011.05.017
Galimberti, D., & Scarpini, E. (2010). Treatment of Alzheimer's disease: symptomatic and disease-modifying approaches. Curr Aging Sci, 3(1), 46-56. doi:10.2174/1874609811003010046
Ghumatkar, P. J., Patil, S. P., Jain, P. D., Tambe, R. M., & Sathaye, S. (2015). Nootropic, neuroprotective and neurotrophic effects of phloretin in scopolamine induced amnesia in mice. Pharmacol Biochem Behav, 135, 182-191. doi:10.1016/j.pbb.2015.06.005
Guo, H. B., Cheng, Y. F., Wu, J. G., Wang, C. M., Wang, H. T., Zhang, C., . . . Xu, J. P. (2015). Donepezil improves learning and memory deficits in APP/PS1 mice by inhibition of microglial activation. Neuroscience, 290, 530-542. doi:10.1016/j.neuroscience.2015.01.058
Huang, W. J., Zhang, X., & Chen, W. W. (2016). Role of oxidative stress in Alzheimer's disease. Biomed Rep, 4(5), 519-522. doi:10.3892/br.2016.630
Huh, J. Y., Panagiotou, G., Mougios, V., Brinkoetter, M., Vamvini, M. T., Schneider, B. E., & Mantzoros, C. S. (2012). FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism, 61(12), 1725-1738. doi:10.1016/j.metabol.2012.09.002
Jangra, A., Kasbe, P., Pandey, S. N., Dwivedi, S., Gurjar, S. S., Kwatra, M., . . . Lahkar, M. (2015). Hesperidin and Silibinin Ameliorate Aluminum-Induced Neurotoxicity: Modulation of Antioxidants and Inflammatory Cytokines Level in Mice Hippocampus. Biol Trace Elem Res, 168(2), 462-471. doi:10.1007/s12011-015-0375-7
Jodeiri Farshbaf, M., & Alviña, K. (2021). Multiple Roles in Neuroprotection for the Exercise Derived Myokine Irisin. Frontiers in Aging Neuroscience, 13. doi:10.3389/fnagi.2021.649929
Kamada, S., Kusano, H., Fujita, H., Ohtsu, M., Koya, R. C., Kuzumaki, N., & Tsujimoto, Y. (1998). A cloning method for caspase substrates that uses the yeast two-hybrid system: cloning of the antiapoptotic gene gelsolin. Proc Natl Acad Sci U S A, 95(15), 8532-8537. doi:10.1073/pnas.95.15.8532
Konar, A., Shah, N., Singh, R., Saxena, N., Kaul, S. C., Wadhwa, R., & Thakur, M. K. (2011). Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PLoS One, 6(11), e27265. doi:10.1371/journal.pone.0027265
L, H., Y, F., & Y, L. (2011). Efficacy observation on old dementia treated with donepezil hydrochloride. Chin Commun Doc, 13(10), 124-125.
Lepeta, K., Lourenco, M. V., Schweitzer, B. C., Martino Adami, P. V., Banerjee, P., Catuara-Solarz, S., . . . Seidenbecher, C. (2016). Synaptopathies: synaptic dysfunction in neurological disorders - A review from students to students. J Neurochem, 138(6), 785-805. doi:10.1111/jnc.13713
Li, D. J., Li, Y. H., Yuan, H. B., Qu, L. F., & Wang, P. (2017). The novel exercise-induced hormone irisin protects against neuronal injury via activation of the Akt and ERK1/2 signaling pathways and contributes to the neuroprotection of physical exercise in cerebral ischemia. Metabolism, 68, 31-42. doi:10.1016/j.metabol.2016.12.003
Lourenco, M. V., Ferreira, S. T., & De Felice, F. G. (2015). Neuronal stress signaling and eIF2α phosphorylation as molecular links between Alzheimer's disease and diabetes. Prog Neurobiol, 129, 37-57. doi:10.1016/j.pneurobio.2015.03.003
Lourenco, M. V., Frozza, R. L., de Freitas, G. B., Zhang, H., Kincheski, G. C., Ribeiro, F. C., . . . De Felice, F. G. (2019). Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models. Nat Med, 25(1), 165-175. doi:10.1038/s41591-018-0275-4
Magnotti, R. A., Jr., Eberly, J. P., Quarm, D. E., & McConnell, R. S. (1987). Measurement of acetylcholinesterase in erythrocytes in the field. Clin Chem, 33(10), 1731-1735.
Maskos, K., Fernandez-Catalan, C., Huber, R., Bourenkov, G. P., Bartunik, H., Ellestad, G. A., . . . Bode, W. (1998). Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme. Proc Natl Acad Sci U S A, 95(7), 3408-3412. doi:10.1073/pnas.95.7.3408
Mazur-Bialy, A. I., Kozlowska, K., Pochec, E., Bilski, J., & Brzozowski, T. (2018). Myokine irisin-induced protection against oxidative stress in vitro. Involvement of heme oxygenase-1 and antioxidazing enzymes superoxide dismutase-2 and glutathione peroxidase. J Physiol Pharmacol, 69(1), 117-125. doi:10.26402/jpp.2018.1.13
Meunier, J., Ieni, J., & Maurice, T. (2006). Antiamnesic and neuroprotective effects of donepezil against learning impairments induced in mice by exposure to carbon monoxide gas. J Pharmacol Exp Ther, 317(3), 1307-1319. doi:10.1124/jpet.106.101527
Moon, H. S., Dincer, F., & Mantzoros, C. S. (2013). Pharmacological concentrations of irisin increase cell proliferation without influencing markers of neurite outgrowth and synaptogenesis in mouse H19-7 hippocampal cell lines. Metabolism, 62(8), 1131-1136. doi:10.1016/j.metabol.2013.04.007
Ng, T. K. S., Ho, C. S. H., Tam, W. W. S., Kua, E. H., & Ho, R. C. (2019). Decreased Serum Brain-Derived Neurotrophic Factor (BDNF) Levels in Patients with Alzheimer's Disease (AD): A Systematic Review and Meta-Analysis. Int J Mol Sci, 20(2). doi:10.3390/ijms20020257
Pattanashetti, L. A., Taranalli, A. D., Parvatrao, V., Malabade, R. H., & Kumar, D. (2017). Evaluation of neuroprotective effect of quercetin with donepezil in scopolamine-induced amnesia in rats. Indian J Pharmacol, 49(1), 60-64. doi:10.4103/0253-7613.201016
Pesce, M., La Fratta, I., Paolucci, T., Grilli, A., Patruno, A., Agostini, F., . . . de Sire, A. (2021). From Exercise to Cognitive Performance: Role of Irisin. Applied Sci, 11(15), 7120. Retrieved from https://www.mdpi.com/2076-3417/11/15/7120
Rabiee, F., Lachinani, L., Ghaedi, S., Nasr-Esfahani, M. H., Megraw, T. L., & Ghaedi, K. (2020). New insights into the cellular activities of Fndc5/Irisin and its signaling pathways. Cell Biosci, 10, 51. doi:10.1186/s13578-020-00413-3
Rahimzadegan, M., & Soodi, M. (2018). Comparison of Memory Impairment and Oxidative Stress Following Single or Repeated Doses Administration of Scopolamine in Rat Hippocampus. Basic Clin Neurosci, 9(1), 5-14. doi:10.29252/nirp.Bcn.9.1.5
Seifhosseini, S., Jahanshahi, M., Moghimi, A., & Aazami, N.-S. (2011). The Effect of Scopolamine on Avoidance Memory and Hippocampal Neurons in Male Wistar Rats. Basic and Clinical Neuroscience Journal, 3(1), 9-15. Retrieved from http://bcn.iums.ac.ir/article-1-190-en.html
Sharma, K. (2019). Cholinesterase inhibitors as Alzheimer's therapeutics (Review). Mol Med Rep, 20(2), 1479-1487. doi:10.3892/mmr.2019.10374
Shin, C. Y., Kim, H. S., Cha, K. H., Won, D. H., Lee, J. Y., Jang, S. W., & Sohn, U. D. (2018). The Effects of Donepezil, an Acetylcholinesterase Inhibitor, on Impaired Learning and Memory in Rodents. Biomol Ther (Seoul), 26(3), 274-281. doi:10.4062/biomolther.2017.189
Singh, M., Kaur, M., Kukreja, H., Chugh, R., Silakari, O., & Singh, D. (2013). Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. Eur J Med Chem, 70, 165-188. doi:10.1016/j.ejmech.2013.09.050
Snyder, P. J., Bednar, M. M., Cromer, J. R., & Maruff, P. (2005). Reversal of scopolamine-induced deficits with a single dose of donepezil, an acetylcholinesterase inhibitor. Alzheimers Dement, 1(2), 126-135. doi:10.1016/j.jalz.2005.09.004
Strålin, P., Karlsson, K., Johansson, B. O., & Marklund, S. L. (1995). The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol, 15(11), 2032-2036. doi:10.1161/01.atv.15.11.2032
Tsuji, M., Takeda, H., & Matsumiya, T. (2003). Modulation of passive avoidance in mice by the 5-HT1A receptor agonist flesinoxan: comparison with the benzodiazepine receptor agonist diazepam. Neuropsychopharmacology, 28(4), 664-674. doi:10.1038/sj.npp.1300080
Tu, T., Peng, J., & Jiang, Y. (2020). FNDC5/Irisin: A New Protagonist in Acute Brain Injury. Stem Cells Dev, 29(9), 533-543. doi:10.1089/scd.2019.0232
Wang, K., Song, F., Xu, K., Liu, Z., Han, S., Li, F., & Sun, Y. (2019). Irisin Attenuates Neuroinflammation and Prevents the Memory and Cognitive Deterioration in Streptozotocin-Induced Diabetic Mice. Mediators Inflamm, 2019, 1567179. doi:10.1155/2019/1567179
Zhang, J., Valverde, P., Zhu, X., Murray, D., Wu, Y., Yu, L., . . . Chen, J. (2017). Exercise-induced irisin in bone and systemic irisin administration reveal new regulatory mechanisms of bone metabolism. Bone Res, 5, 16056. doi:10.1038/boneres.2016.56
Zhang, L., Fang, Y., Lian, Y., Chen, Y., Wu, T., Zheng, Y., . . . Xu, Y. (2015). Brain-derived neurotrophic factor ameliorates learning deficits in a rat model of Alzheimer's disease induced by aβ1-42. PLoS One, 10(4), e0122415. doi:10.1371/journal.pone.0122415
Zhao, F., Li, L., Guan, L., Yang, H., Wu, C., & Liu, Y. (2014). Roles for GP IIb/IIIa and αvβ3 integrins in MDA-MB-231 cell invasion and shear flow-induced cancer cell mechanotransduction. Cancer Lett, 344(1), 62-73. doi:10.1016/j.canlet.2013.10.019
Zhou, W., Zhong, G., Fu, S., Xie, H., Chi, T., Li, L., . . . Hu, W. (2016). Microglia-Based Phenotypic Screening Identifies a Novel Inhibitor of Neuroinflammation Effective in Alzheimer's Disease Models. ACS Chem Neurosci, 7(11), 1499-1507. doi:10.1021/acschemneuro.6b00125
Zowail, M. E. M., Awwad, M. H., Khater, E. H., & Nafie, E. H. O. (2018). Administration of Three Natural Products as Protective Agents Against The Genotoxic And Cytotoxic Effect of Methotrexate in Mice (Mus Musculus). Egypt J Hosp Med, 50(1), 78-108. doi:10.21608/ejhm.2018.16078
Published
How to Cite
Issue
Section
Copyright (c) 2022 International journal of health sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.