Comparative study between irisin and donepezil (Anticholinesterase) on cognitive functions in cases of scopolamine induced Alzheimer’s disease

Like condition in male albino rats

https://doi.org/10.53730/ijhs.v6nS2.6919

Authors

  • Passant Medhat Hewady Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
  • Ahmed El-Sayed Abd El-Fatah Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
  • Hala Fouad El-Baradey Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
  • Mohamed Mohamed Madi Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt

Keywords:

Alzheimer’s disease, donepezil, irisin, scopolamine

Abstract

Introduction: Alzheimer's disease (AD) is a progressive neurological disorder. Donepezil hydrochloride is a cholinesterase inhibitor that is selective. Irisin is a 112-amino acid glycosylated protein-hormone. Objective: to compare the effect of irisin and donepezil (anticholinestrase) on cognitive function in cases of scopolamine induced Alzheimer’s disease like condition in male albino rats. Materials and methods: Fifty albino male rats of a local strain, weighing between 150 and 200 g, enrolled in this study. At room temperature, with 12-hour light/dark cycles, and with free access to running tap water and pelleted laboratory chow, the rats were kept in separate cages (5 rats per cage) for the duration of the experiment. Results: Donepezil administration achieved significant decrease in A che level in donepezil treated group, in relation to AD group, (AD+D). Irisin administration caused insignificant change in A che level in Irisin treated group in relation to AD group (AD+I). Conclusions: Irisin can reduce scopolamine-induced AD manifestations through its antiinflammatory, antioxidant and antiapoptotic effects, which were evaluated both biochemically and behavioural. Donepezil enhances memory as it is anti cholinestrase, also it has anti-inflammatory effect. Donepezil and irisin treatment potentiate each other as they act synergestically by different mechanisms to counrtact memory loss. 

Downloads

Download data is not yet available.

References

Amaro Andrade, P., Souza Silveira, B. K., Corrêa Rodrigues, A., Oliveira da Silva, F. M., Barbosa Rosa, C. O., & Gonçalves Alfenas, R. C. (2018). Effect of exercise on concentrations of irisin in overweight individuals: A systematic review. Science & Sports, 33(2), 80-89. doi:https://doi.org/10.1016/j.scispo.2017.11.002

Asadi, Y., Gorjipour, F., Behrouzifar, S., & Vakili, A. (2018). Irisin Peptide Protects Brain Against Ischemic Injury Through Reducing Apoptosis and Enhancing BDNF in a Rodent Model of Stroke. Neurochem Res, 43(8), 1549-1560. doi:10.1007/s11064-018-2569-9

Beutler, E., & Kelly, B. M. (1963). The effect of sodium nitrite on red cell GSH. Experientia, 19, 96-97. doi:10.1007/bf02148042

Bhuvanendran, S., Kumari, Y., Othman, I., & Shaikh, M. F. (2018). Amelioration of Cognitive Deficit by Embelin in a Scopolamine-Induced Alzheimer's Disease-Like Condition in a Rat Model. Front Pharmacol, 9, 665. doi:10.3389/fphar.2018.00665

Binder, D. K., & Scharfman, H. E. (2004). Brain-derived neurotrophic factor. Growth Factors, 22(3), 123-131. doi:10.1080/08977190410001723308

Chen, B. H., Park, J. H., Lee, T. K., Song, M., Kim, H., Lee, J. C., . . . Ahn, J. H. (2018). Melatonin attenuates scopolamine-induced cognitive impairment via protecting against demyelination through BDNF-TrkB signaling in the mouse dentate gyrus. Chem Biol Interact, 285, 8-13. doi:10.1016/j.cbi.2018.02.023

Choi, S. H., Bylykbashi, E., Chatila, Z. K., Lee, S. W., Pulli, B., Clemenson, G. D., . . . Tanzi, R. E. (2018). Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model. Science, 361(6406). doi:10.1126/science.aan8821

Conde, C. A., Costa, V., & Tomaz, C. (1999). Measuring emotional memory in the elevated T-maze using a training-to-criterion procedure. Pharmacol Biochem Behav, 63(1), 63-69. doi:10.1016/s0091-3057(98)00251-2

Cutuli, D., De Bartolo, P., Caporali, P., Tartaglione, A. M., Oddi, D., D'Amato, F. R., . . . Petrosini, L. (2013). Neuroprotective effects of donepezil against cholinergic depletion. Alzheimers Res Ther, 5(5), 50. doi:10.1186/alzrt215

D'Amelio, M., & Rossini, P. M. (2012). Brain excitability and connectivity of neuronal assemblies in Alzheimer's disease: from animal models to human findings. Prog Neurobiol, 99(1), 42-60. doi:10.1016/j.pneurobio.2012.07.001

de Freitas, G. B., Lourenco, M. V., & De Felice, F. G. (2020). Protective actions of exercise-related FNDC5/Irisin in memory and Alzheimer's disease. J Neurochem, 155(6), 602-611. doi:10.1111/jnc.15039

El-Marasy, S. A., Abd-Elsalam, R. M., & Ahmed-Farid, O. A. (2018). Ameliorative Effect of Silymarin on Scopolamine-induced Dementia in Rats. Open Access Maced J Med Sci, 6(7), 1215-1224. doi:10.3889/oamjms.2018.257

Erickson, K. I., Weinstein, A. M., & Lopez, O. L. (2012). Physical activity, brain plasticity, and Alzheimer's disease. Arch Med Res, 43(8), 615-621. doi:10.1016/j.arcmed.2012.09.008

Gacar, N., Mutlu, O., Utkan, T., Komsuoglu Celikyurt, I., Gocmez, S. S., & Ulak, G. (2011). Beneficial effects of resveratrol on scopolamine but not mecamylamine induced memory impairment in the passive avoidance and Morris water maze tests in rats. Pharmacol Biochem Behav, 99(3), 316-323. doi:10.1016/j.pbb.2011.05.017

Galimberti, D., & Scarpini, E. (2010). Treatment of Alzheimer's disease: symptomatic and disease-modifying approaches. Curr Aging Sci, 3(1), 46-56. doi:10.2174/1874609811003010046

Ghumatkar, P. J., Patil, S. P., Jain, P. D., Tambe, R. M., & Sathaye, S. (2015). Nootropic, neuroprotective and neurotrophic effects of phloretin in scopolamine induced amnesia in mice. Pharmacol Biochem Behav, 135, 182-191. doi:10.1016/j.pbb.2015.06.005

Guo, H. B., Cheng, Y. F., Wu, J. G., Wang, C. M., Wang, H. T., Zhang, C., . . . Xu, J. P. (2015). Donepezil improves learning and memory deficits in APP/PS1 mice by inhibition of microglial activation. Neuroscience, 290, 530-542. doi:10.1016/j.neuroscience.2015.01.058

Huang, W. J., Zhang, X., & Chen, W. W. (2016). Role of oxidative stress in Alzheimer's disease. Biomed Rep, 4(5), 519-522. doi:10.3892/br.2016.630

Huh, J. Y., Panagiotou, G., Mougios, V., Brinkoetter, M., Vamvini, M. T., Schneider, B. E., & Mantzoros, C. S. (2012). FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism, 61(12), 1725-1738. doi:10.1016/j.metabol.2012.09.002

Jangra, A., Kasbe, P., Pandey, S. N., Dwivedi, S., Gurjar, S. S., Kwatra, M., . . . Lahkar, M. (2015). Hesperidin and Silibinin Ameliorate Aluminum-Induced Neurotoxicity: Modulation of Antioxidants and Inflammatory Cytokines Level in Mice Hippocampus. Biol Trace Elem Res, 168(2), 462-471. doi:10.1007/s12011-015-0375-7

Jodeiri Farshbaf, M., & Alviña, K. (2021). Multiple Roles in Neuroprotection for the Exercise Derived Myokine Irisin. Frontiers in Aging Neuroscience, 13. doi:10.3389/fnagi.2021.649929

Kamada, S., Kusano, H., Fujita, H., Ohtsu, M., Koya, R. C., Kuzumaki, N., & Tsujimoto, Y. (1998). A cloning method for caspase substrates that uses the yeast two-hybrid system: cloning of the antiapoptotic gene gelsolin. Proc Natl Acad Sci U S A, 95(15), 8532-8537. doi:10.1073/pnas.95.15.8532

Konar, A., Shah, N., Singh, R., Saxena, N., Kaul, S. C., Wadhwa, R., & Thakur, M. K. (2011). Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PLoS One, 6(11), e27265. doi:10.1371/journal.pone.0027265

L, H., Y, F., & Y, L. (2011). Efficacy observation on old dementia treated with donepezil hydrochloride. Chin Commun Doc, 13(10), 124-125.

Lepeta, K., Lourenco, M. V., Schweitzer, B. C., Martino Adami, P. V., Banerjee, P., Catuara-Solarz, S., . . . Seidenbecher, C. (2016). Synaptopathies: synaptic dysfunction in neurological disorders - A review from students to students. J Neurochem, 138(6), 785-805. doi:10.1111/jnc.13713

Li, D. J., Li, Y. H., Yuan, H. B., Qu, L. F., & Wang, P. (2017). The novel exercise-induced hormone irisin protects against neuronal injury via activation of the Akt and ERK1/2 signaling pathways and contributes to the neuroprotection of physical exercise in cerebral ischemia. Metabolism, 68, 31-42. doi:10.1016/j.metabol.2016.12.003

Lourenco, M. V., Ferreira, S. T., & De Felice, F. G. (2015). Neuronal stress signaling and eIF2α phosphorylation as molecular links between Alzheimer's disease and diabetes. Prog Neurobiol, 129, 37-57. doi:10.1016/j.pneurobio.2015.03.003

Lourenco, M. V., Frozza, R. L., de Freitas, G. B., Zhang, H., Kincheski, G. C., Ribeiro, F. C., . . . De Felice, F. G. (2019). Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models. Nat Med, 25(1), 165-175. doi:10.1038/s41591-018-0275-4

Magnotti, R. A., Jr., Eberly, J. P., Quarm, D. E., & McConnell, R. S. (1987). Measurement of acetylcholinesterase in erythrocytes in the field. Clin Chem, 33(10), 1731-1735.

Maskos, K., Fernandez-Catalan, C., Huber, R., Bourenkov, G. P., Bartunik, H., Ellestad, G. A., . . . Bode, W. (1998). Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme. Proc Natl Acad Sci U S A, 95(7), 3408-3412. doi:10.1073/pnas.95.7.3408

Mazur-Bialy, A. I., Kozlowska, K., Pochec, E., Bilski, J., & Brzozowski, T. (2018). Myokine irisin-induced protection against oxidative stress in vitro. Involvement of heme oxygenase-1 and antioxidazing enzymes superoxide dismutase-2 and glutathione peroxidase. J Physiol Pharmacol, 69(1), 117-125. doi:10.26402/jpp.2018.1.13

Meunier, J., Ieni, J., & Maurice, T. (2006). Antiamnesic and neuroprotective effects of donepezil against learning impairments induced in mice by exposure to carbon monoxide gas. J Pharmacol Exp Ther, 317(3), 1307-1319. doi:10.1124/jpet.106.101527

Moon, H. S., Dincer, F., & Mantzoros, C. S. (2013). Pharmacological concentrations of irisin increase cell proliferation without influencing markers of neurite outgrowth and synaptogenesis in mouse H19-7 hippocampal cell lines. Metabolism, 62(8), 1131-1136. doi:10.1016/j.metabol.2013.04.007

Ng, T. K. S., Ho, C. S. H., Tam, W. W. S., Kua, E. H., & Ho, R. C. (2019). Decreased Serum Brain-Derived Neurotrophic Factor (BDNF) Levels in Patients with Alzheimer's Disease (AD): A Systematic Review and Meta-Analysis. Int J Mol Sci, 20(2). doi:10.3390/ijms20020257

Pattanashetti, L. A., Taranalli, A. D., Parvatrao, V., Malabade, R. H., & Kumar, D. (2017). Evaluation of neuroprotective effect of quercetin with donepezil in scopolamine-induced amnesia in rats. Indian J Pharmacol, 49(1), 60-64. doi:10.4103/0253-7613.201016

Pesce, M., La Fratta, I., Paolucci, T., Grilli, A., Patruno, A., Agostini, F., . . . de Sire, A. (2021). From Exercise to Cognitive Performance: Role of Irisin. Applied Sci, 11(15), 7120. Retrieved from https://www.mdpi.com/2076-3417/11/15/7120

Rabiee, F., Lachinani, L., Ghaedi, S., Nasr-Esfahani, M. H., Megraw, T. L., & Ghaedi, K. (2020). New insights into the cellular activities of Fndc5/Irisin and its signaling pathways. Cell Biosci, 10, 51. doi:10.1186/s13578-020-00413-3

Rahimzadegan, M., & Soodi, M. (2018). Comparison of Memory Impairment and Oxidative Stress Following Single or Repeated Doses Administration of Scopolamine in Rat Hippocampus. Basic Clin Neurosci, 9(1), 5-14. doi:10.29252/nirp.Bcn.9.1.5

Seifhosseini, S., Jahanshahi, M., Moghimi, A., & Aazami, N.-S. (2011). The Effect of Scopolamine on Avoidance Memory and Hippocampal Neurons in Male Wistar Rats. Basic and Clinical Neuroscience Journal, 3(1), 9-15. Retrieved from http://bcn.iums.ac.ir/article-1-190-en.html

Sharma, K. (2019). Cholinesterase inhibitors as Alzheimer's therapeutics (Review). Mol Med Rep, 20(2), 1479-1487. doi:10.3892/mmr.2019.10374

Shin, C. Y., Kim, H. S., Cha, K. H., Won, D. H., Lee, J. Y., Jang, S. W., & Sohn, U. D. (2018). The Effects of Donepezil, an Acetylcholinesterase Inhibitor, on Impaired Learning and Memory in Rodents. Biomol Ther (Seoul), 26(3), 274-281. doi:10.4062/biomolther.2017.189

Singh, M., Kaur, M., Kukreja, H., Chugh, R., Silakari, O., & Singh, D. (2013). Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. Eur J Med Chem, 70, 165-188. doi:10.1016/j.ejmech.2013.09.050

Snyder, P. J., Bednar, M. M., Cromer, J. R., & Maruff, P. (2005). Reversal of scopolamine-induced deficits with a single dose of donepezil, an acetylcholinesterase inhibitor. Alzheimers Dement, 1(2), 126-135. doi:10.1016/j.jalz.2005.09.004

Strålin, P., Karlsson, K., Johansson, B. O., & Marklund, S. L. (1995). The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol, 15(11), 2032-2036. doi:10.1161/01.atv.15.11.2032

Tsuji, M., Takeda, H., & Matsumiya, T. (2003). Modulation of passive avoidance in mice by the 5-HT1A receptor agonist flesinoxan: comparison with the benzodiazepine receptor agonist diazepam. Neuropsychopharmacology, 28(4), 664-674. doi:10.1038/sj.npp.1300080

Tu, T., Peng, J., & Jiang, Y. (2020). FNDC5/Irisin: A New Protagonist in Acute Brain Injury. Stem Cells Dev, 29(9), 533-543. doi:10.1089/scd.2019.0232

Wang, K., Song, F., Xu, K., Liu, Z., Han, S., Li, F., & Sun, Y. (2019). Irisin Attenuates Neuroinflammation and Prevents the Memory and Cognitive Deterioration in Streptozotocin-Induced Diabetic Mice. Mediators Inflamm, 2019, 1567179. doi:10.1155/2019/1567179

Zhang, J., Valverde, P., Zhu, X., Murray, D., Wu, Y., Yu, L., . . . Chen, J. (2017). Exercise-induced irisin in bone and systemic irisin administration reveal new regulatory mechanisms of bone metabolism. Bone Res, 5, 16056. doi:10.1038/boneres.2016.56

Zhang, L., Fang, Y., Lian, Y., Chen, Y., Wu, T., Zheng, Y., . . . Xu, Y. (2015). Brain-derived neurotrophic factor ameliorates learning deficits in a rat model of Alzheimer's disease induced by aβ1-42. PLoS One, 10(4), e0122415. doi:10.1371/journal.pone.0122415

Zhao, F., Li, L., Guan, L., Yang, H., Wu, C., & Liu, Y. (2014). Roles for GP IIb/IIIa and αvβ3 integrins in MDA-MB-231 cell invasion and shear flow-induced cancer cell mechanotransduction. Cancer Lett, 344(1), 62-73. doi:10.1016/j.canlet.2013.10.019

Zhou, W., Zhong, G., Fu, S., Xie, H., Chi, T., Li, L., . . . Hu, W. (2016). Microglia-Based Phenotypic Screening Identifies a Novel Inhibitor of Neuroinflammation Effective in Alzheimer's Disease Models. ACS Chem Neurosci, 7(11), 1499-1507. doi:10.1021/acschemneuro.6b00125

Zowail, M. E. M., Awwad, M. H., Khater, E. H., & Nafie, E. H. O. (2018). Administration of Three Natural Products as Protective Agents Against The Genotoxic And Cytotoxic Effect of Methotrexate in Mice (Mus Musculus). Egypt J Hosp Med, 50(1), 78-108. doi:10.21608/ejhm.2018.16078

Published

04-05-2022

How to Cite

Hewady, P. M., El-Fatah, A. E.-S. A., El-Baradey, H. F., & Madi, M. M. (2022). Comparative study between irisin and donepezil (Anticholinesterase) on cognitive functions in cases of scopolamine induced Alzheimer’s disease: Like condition in male albino rats. International Journal of Health Sciences, 6(S2), 8442–8458. https://doi.org/10.53730/ijhs.v6nS2.6919

Issue

Section

Peer Review Articles

Most read articles by the same author(s)