Power optimization of Low Noise Amplifier (LNA) and DAC used in Closed Loop Deep Brain Neuro-Stimulator (CDBS) at 45nm using Cadence Virtuoso

https://doi.org/10.53730/ijhs.v6nS3.7153

Authors

  • Sufia Banu Research Scholar, Department of Electronics Engineering, Jain (Deemed-to-be University), Bengaluru, India | Assistant Professor, Department of ECE, HKBK College of Engineering, Bengaluru-560045, India
  • Shweta Gupta Associate Professor, Department of ECE, Jain University, Bengaluru, India

Keywords:

CMOS, Deep-Brain-Stimulation (DBS, Digital-to-Analog Converters (DAC), Low-Noise Amplifier (LNA), low power

Abstract

Deep-Brain-Stimulation (DBS) is a rapidly growing area which aims to enhance the lives of patients with different types of brain disorders. In regards of implanted devices, it's perhaps one of the most active research topics. This study describes a Low-Noise-Amplifier (LNA) and Digital-to-Analog Convertor (DAC) for biopotential collection on Deep Brain Stimulation.

Downloads

Download data is not yet available.

References

Xiaoyuan Xu, Xiaodan Zou, Libin Yao and Yong Lian, “A 1-V 450- nW fully integrated biomedical sensor interface System,” IEEE Symp. VLSI Circuits Dig. Tech. Papers, pp. 78-79, June. 2008.

J. R. Wolpawa, N. Birbaumerc, D. J. McFarlanda, G. Pfurtschellere, and T. M. Vaughan, “Brain–computer interfaces for communication and control”, Clinical Neurophysiology, Vol. 113, pp. 767-791, 2002.

H. Nagel, “Nagel, J. H. ‘Biopotential Amplifiers.’ in The Biomedical Engineering Handbook, Second., E. J. D. Bronzino, Ed. CRC Press LLC, 2000.

H. Ali, H. H. Naing, and R. Yaqub, “An IoT Assisted Real-Time High CMRR Wireless Ambulatory ECG Monitoring System with Arrhythmia Detection|, Electronics: MDPI, Vol. 10, No. 16, August 2021.

Q. Chen, S. Kastratovic, M. Eid, and S. Ha, "A Non-Contact Compact Portable ECG Monitoring System", Electronics: MDPI, Vol. 10, No. 18, September 2021.

M. Fernandes, J. H. Correia, and P. M. Mendes, "Electro-optic acquisition system for ECG wearable sensor applications", Journal Sensors and Actuators A, Vol. 203, pp. 316-323, December 2013.

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity”, Nature Neuroscience, Vol. 8, No. 9, pp. 1263-1268, September 2005.

K. Deisseroth, “Optogenetics”, Nature Methods, Vol. 8, No. 1, pp. 26-29, 2011.

K. Deisseroth, “Optogenetics: 10 years of microbial opsins in neuroscience”, Nature Neuroscience, Vol. 18, No. 9, pp. 1213-1225, September 2015.

S. I. Park, D. S. Brenner, G. Shin, C. D. Morgan, B. A. Copits, H. U. Chung, M. Y. Pullen, K. N. Noh, S. Davidson, S. J. Oh, J. Yoon, K.-I. Jang, V. K. Samineni, M. Norman, J. G. Grajales-Reyes, S. K. Vogt, S. S. Sundaram, K. M. Wilson, J. S. Ha, R. Xu, T. Pan, T.-il Kim, Y. Huang, M. C. Montana, J. P. Golden, M. R. Bruchas, R. W. Gereau IV, and J. A. Rogers, “Soft, stretchable, 507 fully implantable miniaturized optoelectronic systems for wireless optogenetics”, Nature Biotechnology, Vol. 33, No. 12, pp. 1280-1288, December 2015.

Y. Zhang, D. C. Castro,, Y. Han, Y. Wu, H. Guo, Z. Weng, Y. Xue, J. Ausra, X. Wang, R. Li, G. Wu, A. Vázquez-Guardado, 510 Y. Xie, Z. Xie, D. Ostojich, D. Peng, R. Sun, B. Wang, Y. Yuq, J. P. Leshock, S. Qu, C.-J. Su, W. Shen, T. Hang, A. Banks, Y. Huang, J. Radulovic, P. Gutrufi, M. R. Bruchas, and J. A. Roger, “Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics”, Proceedings of the National Academy of Sciences of the United States of America (PNAS), Vol. 116, No. 43, pp. 21427-21437, October 2019.

M. Engelene, J. Obien, K. Deligkaris, T. Bullmann, D. J. Bakkum, and U. Frey, “Revealing neuronal function through microe- lectrode array recordings|, Fronteers in Neuroscience, Vol. 8, pp. 1-30, January 2015. #423

Y .Sui, Y. Tian, W. K. D. Ko, Z. Wang, F. Jia, A. Horn, D. De Ridder, K. S. Choi, A. A. Bari, S. Wang, C. Hamani, K. B. Baker, A. G. Machado, T. Z. Aziz, E. T. Fonoff, A. A. Kühn, H. Bergman, T. Sanger, H. Liu, S. N. Haber, and L. Li, "Deep brain stimu-lation initiative: toward innovative technology, new disease indications, and approaches to current and future clinical chal-lenges in neuromodulation therapy", Frontiers in Neurology, Vol. 11, pp. 1-21, January 2021. #59745.

B. S. Appleby, P. S. Duggan, A. Regenberg, and P. V. Rabins, “Psychiatric and Neuropsychiatric Adverse Events Associated With Deep Brain Stimulation: A Meta-analysis of Ten Years’ Experience”, Movement Disorders, Vol. 22, No. 12, pp. 1722-1728, 2007.

P. Hickey, and M. Stacy, "Deep Brain Stimulation: A Paradigm Shifting Approach to Treat Parkinson's Disease", Fronteers in Neuroscience, Vol. 10, pp. 1-11, April 2016. #173

J. Sterman, A. Cunqueiro, R. J. Dym, M. Spektor, M. L. Lipton, M. V. Revzim, and M. H. Scheinfeld, "Implantable Electronic Stimulation Devices from Head to Sacrum: Imaging Features and Functions", Vol. 39, No. 4, pp. 1056-1074, July 2019.

DBSTM lead kit for deep brain stimulation: Model 3387 and 3389 DBS leads, Implant manual, Medtronic Inc., Catalog 528 M197928A008, 2008.

VerciseTM DBS leads: directions for use, Boston Scientific Corporation, Catalog 91172963- 02 REV A 2017-02, 2017.

K. B. Hoang, I. R. Cassar, W. M. Grill, and D. A. Turner, “Biomarkers and Stimulation Algorithms for Adaptive Brain Stimula-531 tion”, Frontiers in Neuroscience, Vol. 11, pp. 1-15, 2017.

M. L. Kringelbach, N. Jenkinson, S. L. F. Owen, and T. Z. Aziz, “Translational principles of deep brain stimulation”, Nature 535 Reviews Neuroscience, Vol. 8, No. 8, pp. 623-635, 2007.

M. Parastarfeizabadi, and A. Z. Kouzani, “Advances in closed-loop deep brain stimulation devices”, Journal of NeuroEngineering and Rehabilitation, 14:79, pp. 1 20, 2017.

J. Lee, H. Rhew, D. Kipke and M. Flynn, "A 64 Channel Programmable Closed-Loop Neurostimulator With 8 Channel Neural Amplifier and Logarithmic ADC", IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 1935-1945, 2010. Available: 10.1109/jssc.2010.2052403.

S. Guptha, Shivakar and V K Singh “Bionics Based Solar Powered Clothing for Treating Parkinson’s Disease and Epilepsy”, International Journal of Life Sciences Biotechnology and Pharma Research Vol. 4, No. 2, April 2015 ©2015

P. Patel* and D. Naik, "A Low Voltage High Speed Segmented Current Steering DAC for Neural Stimulation Application", International Journal of Recent Technology and Engineering (IJRTE), vol. 8, no. 5, pp. 4270-4274, 2020. Available: 10.35940/ijrte.e6586.018520.

E. Greenwald et al., "A CMOS Current Steering Neurostimulation Array With Integrated DAC Calibration and Charge Balancing", IEEE Transactions on Biomedical Circuits and Systems, vol. 11, no. 2, pp. 324-335, 2017. Available: 10.1109/tbcas.2016.2609854.

T. Nordi et al., "Low-Noise Amplifier for Deep-Brain Stimulation (DBS)", Electronics, vol. 11, no. 6, p. 939, 2022. Available: 10.3390/electronics11060939.

X. Li, S. Zhong and J. Morizio, "16-Channel biphasic current-mode programmable charge balanced neural stimulation", BioMedical Engineering OnLine, vol. 16, no. 1, 2017. Available: 10.1186/s12938-017-0385-0.

J. Lee, H. Rhew, D. Kipke and M. Flynn, "A 64 Channel Programmable Closed-Loop Neurostimulator With 8 Channel Neural Amplifier and Logarithmic ADC", IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 1935-1945, 2010. Available: 10.1109/jssc.2010.2052403.

Published

10-05-2022

How to Cite

Banu, S., & Gupta, S. (2022). Power optimization of Low Noise Amplifier (LNA) and DAC used in Closed Loop Deep Brain Neuro-Stimulator (CDBS) at 45nm using Cadence Virtuoso. International Journal of Health Sciences, 6(S3), 5491–5502. https://doi.org/10.53730/ijhs.v6nS3.7153

Issue

Section

Peer Review Articles

Most read articles by the same author(s)