Energy planning in the Santa Ana Canton of the Manabí province

https://doi.org/10.53730/ijpse.v6n3.13792

Authors

  • Alejandro Javier Martínez-Peralta Universidad Técnica Luis Vargas Torres de Esmeraldas, Esmeraldas, Ecuador
  • Byron Fernando Chere-Quiñónez Universidad Técnica Luis Vargas Torres de Esmeraldas, Esmeraldas, Ecuador
  • Jorge Daniel Mercado-Bautista Universidad Técnica Luis Vargas Torres de Esmeraldas, Esmeraldas, Ecuador
  • Raúl Clemente Ulloa-de Souza Universidad Técnica Luis Vargas Torres de Esmeraldas, Esmeraldas, Ecuador

Keywords:

change of energy matrix, distributed generation, planning, renewable sources and energy

Abstract

The accelerated increase in the demand for energy due to development and population growth involves increasing demands on resources. The diversity of typologies of the metropolis, reference to resources, requests, architectural conditions, infrastructure, or density, make a specific study important. The objective is to determine the most appropriate technology to be installed in the mode of distributed generation with renewable energy sources, the use of the geographic information system and qualitative and quantitative analysis was applied as a methodology. In the work, certain reference resources are identified for the organization process that would allow the selection of the most correct technology for the Santa Ana Canton in the province of Manabí, where the environmental resources that are sustained to make investments taking advantage of other types of clean energy were valued because the resource is the component with the most monumental preponderance, followed by economic conditions; On the other hand, it is detected that points of the environment such as climate change, eutrophication or acidification, are the least incidents, quick to choose technologies.

Downloads

Download data is not yet available.

References

Beccali, M., Cellura, M., & Mistretta, M. (2003). Decision-making in energy planning. Application of the Electre method at regional level for the diffusion of renewable energy technology. Renewable energy, 28(13), 2063-2087. https://doi.org/10.1016/S0960-1481(03)00102-2

Choudhary, K., Sangwan, K. S., & Goyal, D. (2019). Environment and economic impacts assessment of PET waste recycling with conventional and renewable sources of energy. Procedia CIRP, 80, 422-427. https://doi.org/10.1016/j.procir.2019.01.096

Ehsan, A., & Yang, Q. (2018). Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques. Applied Energy, 210, 44-59. https://doi.org/10.1016/j.apenergy.2017.10.106

Ghosh, S., Ghoshal, S. P., & Ghosh, S. (2010). Optimal sizing and placement of distributed generation in a network system. International Journal of Electrical Power & Energy Systems, 32(8), 849-856. https://doi.org/10.1016/j.ijepes.2010.01.029

Kumar, S., Singh, N., & Prasad, R. (2010). Anhydrous ethanol: A renewable source of energy. Renewable and Sustainable Energy Reviews, 14(7), 1830-1844. https://doi.org/10.1016/j.rser.2010.03.015

Linares, J. A. M., Pérez, A. V., Fernández, M. C., Llanes, M. V., & Gámez, M. R. (2021). Computer application for studies of potentials of renewable energy sources. International Journal of Physical Sciences and Engineering, 5(1), 1–7. https://doi.org/10.29332/ijpse.v5n1.825

Løken, E. (2007). Use of multicriteria decision analysis methods for energy planning problems. Renewable and sustainable energy reviews, 11(7), 1584-1595. https://doi.org/10.1016/j.rser.2005.11.005

Lopes, J. P., Hatziargyriou, N., Mutale, J., Djapic, P., & Jenkins, N. (2007). Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities. Electric power systems research, 77(9), 1189-1203. https://doi.org/10.1016/j.epsr.2006.08.016

Mesalhy, O., Lafdi, K., Elgafy, A., & Bowman, K. (2005). Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix. Energy Conversion and Management, 46(6), 847-867. https://doi.org/10.1016/j.enconman.2004.06.010

Mourmouris, J. C., & Potolias, C. (2013). A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: A case study Thassos, Greece. Energy Policy, 52, 522-530. https://doi.org/10.1016/j.enpol.2012.09.074

Organización de las Naciones Unidas Para el Desarrollo Industrial. (2011). Informe anual.

Palizban, O., & Kauhaniemi, K. (2016). Energy storage systems in modern grids—Matrix of technologies and applications. Journal of Energy Storage, 6, 248-259. https://doi.org/10.1016/j.est.2016.02.001

Pascual (2018), Energías renovables y medio ambiente. su regulación jurídica en Ecuador.

República del Ecuador. (2008). Constitución del Ecuador. Quito: Asamblea Constituyente.

República del Ecuador. Ministerio de Electricidad y Energía Renovable. (2008). Políticas energéticas del Ecuador 2008-2010. Quito: Ministerio de Electricidad y Energía Renovable.

República del Ecuador. Ministerio de Electricidad y Energía Renovable. (2014). Plan estratégico institucional 2014-2017.

República del Ecuador. Secretaría Nacional de Planificación y Desarrollo. (2017). Plan Nacional Toda una vida 2017-2021. Quito: SENPLADES.

Published

2022-12-23

How to Cite

Martínez-Peralta, A. J., Chere-Quiñónez, B. F., Mercado-Bautista, J. D., & Ulloa-de Souza, R. C. (2022). Energy planning in the Santa Ana Canton of the Manabí province. International Journal of Physical Sciences and Engineering, 6(3), 109–118. https://doi.org/10.53730/ijpse.v6n3.13792

Issue

Section

Peer Review Articles