Contributions and benefits of accumulation systems to the electrical system

https://doi.org/10.53730/ijpse.v8n2.15053

Authors

  • Sneider Eduardo Vera-Ruiz Universidad Técnica de Manabi, Portoviejo, Ecuador
  • Aaron Alejandro Coll-Bravo Universidad Técnica de Manabi, Portoviejo, Ecuador
  • Héctor Jesús Macías-Loor Universidad Técnica de Manabi, Portoviejo, Ecuador
  • Kevin Patricio Paz-Mendoza Universidad Técnica de Manabi, Portoviejo, Ecuador
  • Ronald Ismael Véliz-Menéndez Universidad Técnica de Manabi, Portoviejo, Ecuador

Keywords:

accumulation, distributed generation, energy quality, renewable energy

Abstract

Energy storage systems play a crucial role in the modernization and stability of the electrical system. The objective is to explore the different types of storage systems and their contributions to energy efficiency, the integration of renewable energies, and the improvement of the reliability of the electricity supply. A qualitative investigation was carried out, and the bibliographic review and the inductive-deductive method were used as a methodology, the result was that accumulation systems have less economic and environmental impact, standing out as the most innovative technologies and possible implementation at a global level, these Results indicate that the adoption of these systems not only improves grid stability, but also facilitates a faster transition to a sustainable energy future.

Downloads

Download data is not yet available.

References

Aneke, M., & Wang, M. (2016). Energy storage technologies and real life applications–A state of the art review. Applied Energy, 179, 350-377. https://doi.org/10.1016/j.apenergy.2016.06.097 DOI: https://doi.org/10.1016/j.apenergy.2016.06.097

Aranibar Ramos, ER, & Olarte Pacco, MAD (2024). Green hydrogen: opening the doors to a sustainable energy future in Peru. Kawsaypacha Journal: Society and Environment , (13).

Aranibar Ramos, ER, & Olarte Pacco, MAD (2024). Green hydrogen: opening the doors to a sustainable energy future in Peru. Kawsaypacha Journal: Society and Environment , (13).

Barton, J. P., & Infield, D. G. (2004). Energy storage and its use with intermittent renewable energy. IEEE transactions on energy conversion, 19(2), 441-448. DOI: https://doi.org/10.1109/TEC.2003.822305

Brito, WF, Chamba, MS, Echeverría, D., Torre, A., & Panchi, D. (2024). Parametric Identification, Validation and Tuning Tool for Speed Regulators Using Heuristic Optimization Algorithms. Technical Journal of Energy , 20 (2), 21-33. DOI: https://doi.org/10.37116/revistaenergia.v20.n2.2024.612

Castro López, CR, & Castillo Rodríguez, LM (2024). Persistent organic pollutants: Impacts and control measures. Manglar , 21 (1), 135-148. DOI: https://doi.org/10.57188/manglar.2024.014

Díaz-González, F., Sumper, A., Gomis-Bellmunt, O., & Villafáfila-Robles, R. (2012). A review of energy storage technologies for wind power applications. Renewable and sustainable energy reviews, 16(4), 2154-2171. https://doi.org/10.1016/j.rser.2012.01.029 DOI: https://doi.org/10.1016/j.rser.2012.01.029

Divya, K. C., & Østergaard, J. (2009). Battery energy storage technology for power systems—An overview. Electric power systems research, 79(4), 511-520. https://doi.org/10.1016/j.epsr.2008.09.017 DOI: https://doi.org/10.1016/j.epsr.2008.09.017

Dongxu, H., Xingjian, D., Wen, L., Yangli, Z., Xuehui, Z., Haisheng, C., & Zhilai, Z. (2023). A review of flywheel energy storage rotor materials and structures. Journal of Energy Storage, 74, 109076. DOI: https://doi.org/10.1016/j.est.2023.109076

Espinoza, A. (2023). Circular economy: an approach to its origin, evolution and importance as a sustainable development model. Journal of institutional economics , 25 (49), 109-134.

Gámez, M. R., Pérez, A. V., Arauz, W. M. S., & Jurado, W. C. C. (2016). Sustainable transformation of energy matrix. International Research Journal of Engineering, IT and Scientific Research, 2(9), 37-43. DOI: https://doi.org/10.21744/irjeis.v2i9.231

Gómez-Ramírez, G. A., Meza, C., & Morales-Hernández, S. (2021). Opportunities and challenges for the integration of electrochemical storage in Central American power grids. Technology in Motion Journal , 34 (3), 70-82.

Ibrahim, H., Ilinca, A., & Perron, J. (2008). Energy storage systems—Characteristics and comparisons. Renewable and sustainable energy reviews, 12(5), 1221-1250. https://doi.org/10.1016/j.rser.2007.01.023 DOI: https://doi.org/10.1016/j.rser.2007.01.023

IRENA. Electricity Storage and Renewables: Costs and Markets to 2030. International Renewable Energy Agency, 2017.

Jaramillo, CP, Benitez, JF, Echeverria, DE, Cepeda, JC, & Arcos, HN (2022). Analysis of the impact of non-conventional renewable energies on the long-term operational planning of the National Interconnected System using the SimSEE platform. Revista Técnica Energía , 19 (1), 42-52. DOI: https://doi.org/10.37116/revistaenergia.v19.n1.2022.526

Jossen, A., Garche, J., & Sauer, D. U. (2004). Operation conditions of batteries in PV applications. Solar energy, 76(6), 759-769. https://doi.org/10.1016/j.solener.2003.12.013 DOI: https://doi.org/10.1016/j.solener.2003.12.013

Kadiri, M., Ahmadian, R., Bockelmann-Evans, B., Rauen, W., & Falconer, R. (2012). A review of the potential water quality impacts of tidal renewable energy systems. Renewable and sustainable energy reviews, 16(1), 329-341. https://doi.org/10.1016/j.rser.2011.07.160 DOI: https://doi.org/10.1016/j.rser.2011.07.160

Khan, S. A. R., Yu, Z., Belhadi, A., & Mardani, A. (2020). Investigating the effects of renewable energy on international trade and environmental quality. Journal of Environmental management, 272, 111089. https://doi.org/10.1016/j.jenvman.2020.111089 DOI: https://doi.org/10.1016/j.jenvman.2020.111089

León Robaina, R., Alpízar Terrero, M. Á., Boizán Cobas, L., & Suárez Batista, A. (2023). Ex-post evaluation of the commercialization of R&D&I results in science, technology and innovation entities at universities. Economy and Development , 167 (1).

Luo, X., Wang, J., Dooner, M., & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied energy, 137, 511-536. https://doi.org/10.1016/j.apenergy.2014.09.081 DOI: https://doi.org/10.1016/j.apenergy.2014.09.081

Ramos, J. L. M., Pérez, A. V., Gámez, M. R., & Zambrano, R. V. H. (2018). Renewable energy sources on the change of energy matrix in Manabí province. International research journal of engineering, IT & scientific research, 4(4), 17-29. DOI: https://doi.org/10.21744/irjeis.v4n4.255

Saltos-Arauz, W. M., Castro-Fernández, M., Vilaragout-Llane, M., Rodríguez-Gáme, M., & Vázquez-Pérez, A. (2024, January). The microgrids in the improvement of the quality of the electric service: Case study canton chone. In AIP Conference Proceedings (Vol. 2994, No. 1). AIP Publishing. DOI: https://doi.org/10.1063/5.0191082

Sterner, M., & Stadler, I. (Eds.). (2019). Handbook of energy storage: Demand, technologies, integration. Springer. DOI: https://doi.org/10.1007/978-3-662-55504-0

Uzar, U. (2020). Political economy of renewable energy: does institutional quality make a difference in renewable energy consumption?. Renewable Energy, 155, 591-603. https://doi.org/10.1016/j.renene.2020.03.172 DOI: https://doi.org/10.1016/j.renene.2020.03.172

Zakeri, B., & Syri, S. (2015). Electrical energy storage systems: A comparative life cycle cost analysis. Renewable and sustainable energy reviews, 42, 569-596. https://doi.org/10.1016/j.rser.2014.10.011 DOI: https://doi.org/10.1016/j.rser.2014.10.011

Published

2024-08-12

How to Cite

Vera-Ruiz, S. E., Coll-Bravo, A. A., Macías-Loor, H. J., Paz-Mendoza, K. P., & Véliz-Menéndez, R. I. (2024). Contributions and benefits of accumulation systems to the electrical system. International Journal of Physical Sciences and Engineering, 8(2), 9–16. https://doi.org/10.53730/ijpse.v8n2.15053

Issue

Section

Peer Review Articles