Environmental monitoring system to optimize the performance of solar panels in university environments

https://doi.org/10.53730/ijpse.v8n2.15071

Authors

  • Víctor Alfonso Martínez-Falcones Universidad Técnica de Manabi, Portoviejo, Ecuador
  • Alan Cobeña-Zambrano Universidad Técnica de Manabi, Portoviejo, Ecuador
  • Jefferson Jesael Pérez-Loor Universidad Técnica de Manabi, Portoviejo, Ecuador
  • Ángel José Cedeño-Moreira Universidad Técnica de Manabi, Portoviejo, Ecuador
  • Ramón Alejandro Zambrano-Intriago Universidad Técnica de Manabi, Portoviejo, Ecuador

Keywords:

LoT, radiation sensors, renewable energy, solar panel monitoring, temperature

Abstract

A temperature and radiation monitoring system were developed to optimize the performance of solar panels at the Faculty of Engineering and Applied Sciences (FICA) of the Technical University of Manabí. The objective was to implement IoT technologies and high precision sensors for data capture, the waterfall development methodology was applied that facilitated a structured approach, ensuring that each phase, from requirements analysis to maintenance, was executed effectively. The result was the collection of critical data that allows a detailed analysis of the performance of the solar panels. These results demonstrated that the system not only improves the monitoring of solar panels, but also contributes to the more efficient use of renewable energy sources. In addition, the integration of a Dashboard with the Geoportal digital platform allowed a clear and accessible visualization of the data, facilitati  ng informed decision making to optimize the performance of the panels. In conclusion, this system represents a viable solution to improve energy efficiency and offers a solid foundation for future expansions, including the incorporation of more sensors and integration with other IoT platforms, which will further strengthen the sustainability and impact of the project.

Downloads

Download data is not yet available.

References

Abdallah, F. S. M., Abdullah, M. N., Musirin, I., & Elshamy, A. M. (2023). Intelligent solar panel monitoring system and shading detection using artificial neural networks. Energy Reports, 9, 324-334. https://doi.org/10.1016/j.egyr.2023.05.163 DOI: https://doi.org/10.1016/j.egyr.2023.05.163

Abdenacer, P. K., & Nafila, S. (2007). Impact of temperature difference (water-solar collector) on solar-still global efficiency. Desalination, 209(1-3), 298-305. https://doi.org/10.1016/j.desal.2007.04.043 DOI: https://doi.org/10.1016/j.desal.2007.04.043

AppMaster. (2024). Waterfall Methodology in Software Development: Advantages and Disadvantages.

Brooke, J. (1996). SUS-A quick and dirty usability scale. Usability evaluation in industry, 189(194), 4-7.

Cajape-Palma, J. J., Juleidy-Cedeño, N., Cedeño-Cuzme, C. L., Molina-Menendez, E. E., & Zambrano-Intriago, R. A. Monitoring System for a Self-Consumption Photovoltaic System.

Dörenkämper, M., Spataru, S., Bofinger, S., & Elzreli, M. (2021). Photovoltaics: World energy revolution. Renewable and Sustainable Energy Reviews, 147, 111913.

Enaganti, P., Shanmugam, V., & Ramachandran, K. I. (2020). Monitoring and optimization of photovoltaic systems: A review. Renewable Energy, 162, 2351-2364.

ESP32 Learning. (2017). Using UV sensor with ESP32.

ESP32 Tutorial. (2024). ESP32 Projects: A Complete Beginner’s Guide.

Farhan, M. A., & Hasan, W. Z. W. (2021). An IoT based smart solar photovoltaic remote monitoring and control system. IEEE Access, 9, 85806-85821.

Khare, V., Nema, S., & Baredar, P. (2016). Solar–wind hybrid renewable energy system: A review. Renewable and Sustainable Energy Reviews, 58, 23-33. https://doi.org/10.1016/j.rser.2015.12.223 DOI: https://doi.org/10.1016/j.rser.2015.12.223

Kodama, T. (2003). High-temperature solar chemistry for converting solar heat to chemical fuels. Progress in energy and combustion science, 29(6), 567-597. https://doi.org/10.1016/S0360-1285(03)00059-5 DOI: https://doi.org/10.1016/S0360-1285(03)00059-5

Lewis, J. R. (2018). The system usability scale: past, present, and future. International Journal of Human–Computer Interaction, 34(7), 577-590. DOI: https://doi.org/10.1080/10447318.2018.1455307

López-Lapeña, O., & Pallas-Areny, R. (2018). Solar energy radiation measurement with a low–power solar energy harvester. Computers and electronics in agriculture, 151, 150-155. https://doi.org/10.1016/j.compag.2018.06.011 DOI: https://doi.org/10.1016/j.compag.2018.06.011

Ludin, N. A., Mustafa, N. I., Hanafiah, M. M., Ibrahim, M. A., Teridi, M. A. M., Sepeai, S., ... & Sopian, K. (2018). Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review. Renewable and Sustainable Energy Reviews, 96, 11-28. https://doi.org/10.1016/j.rser.2018.07.048 DOI: https://doi.org/10.1016/j.rser.2018.07.048

McLellan, S. G., Muddimer, A., & Peres, S. C. (2012). The effect of experience on SUS ratings. In Proceedings of the 2012 Usability Professionals Association Conference (UPA 2012), Las Vegas, NV, USA.

Meribout, M., Tiwari, V. K., Herrera, J. P. P., & Baobaid, A. N. M. A. (2023). Solar panel inspection techniques and prospects. Measurement, 209, 112466. https://doi.org/10.1016/j.measurement.2023.112466 DOI: https://doi.org/10.1016/j.measurement.2023.112466

ProjectManager. (2024). What is Waterfall Methodology in Project Management?

Random Nerd Tutorials. (2021). ESP32 with DHT11/DHT22 Temperature and Humidity Sensor using Arduino IDE (Guide).

Rich, P. M., Clark, D. B., Clark, D. A., & Oberbauer, S. F. (1993). Long-term study of solar radiation regimes in a tropical wet forest using quantum sensors and hemispherical photography. Agricultural and forest meteorology, 65(1-2), 107-127. https://doi.org/10.1016/0168-1923(93)90040-O DOI: https://doi.org/10.1016/0168-1923(93)90040-O

Santos, R. (2022). Using ESP32 in IoT applications. IoT Journal, 10(1), 45-56.

Sauro, J., & Lewis, J. R. (2016). Quantifying the user experience: Practical statistics for user research. Morgan Kaufmann. DOI: https://doi.org/10.1016/B978-0-12-802308-2.00002-3

Sox, C. R., Jackson, P. L., Bowman, A., & Muckstadt, J. A. (1999). A review of the stochastic lot scheduling problem. International Journal of Production Economics, 62(3), 181-200. https://doi.org/10.1016/S0925-5273(98)00247-3 DOI: https://doi.org/10.1016/S0925-5273(98)00247-3

Winands, E. M., Adan, I. J., & van Houtum, G. J. (2011). The stochastic economic lot scheduling problem: A survey. European Journal of Operational Research, 210(1), 1-9. https://doi.org/10.1016/j.ejor.2010.06.011 DOI: https://doi.org/10.1016/j.ejor.2010.06.011

Published

2024-08-19

How to Cite

Martínez-Falcones, V. A., Cobeña-Zambrano, A., Pérez-Loor, J. J., Cedeño-Moreira, Ángel J., & Zambrano-Intriago, R. A. (2024). Environmental monitoring system to optimize the performance of solar panels in university environments. International Journal of Physical Sciences and Engineering, 8(2), 26–35. https://doi.org/10.53730/ijpse.v8n2.15071

Issue

Section

Peer Review Articles