Manufacturing a water turffity measuring equipment using the AB209 module sensor based on the ATMega328 microcontroller

https://doi.org/10.53730/ijpse.v8n3.15383

Authors

  • I. W. Supardi Udayana University, Denpasar, Indonesia
  • N. Y. Rupiasih Udayana University, Denpasar, Indonesia
  • A. A. Gede Mahendra Putra Udayana University, Denpasar, Indonesia
  • A. A. Andreas Putra Prawira Djlantik Udayana University, Denpasar, Indonesia

Keywords:

ATMega328, LCD, microcontroller, sensor, turbidity

Abstract

The development of electronic technology in the era of globalization is very rapid. Utilizing this technology as a means to monitor water clarity, especially the condition of the water, whether it is clean or there are other materials mixed with the water (turbid), to find out optimal water conditions, optimal monitoring is needed. This research will create a system that can detect water turbidity. The tool consists of a Turbidity Sensor Module AB209 sensor, ADC, and ATMega328 microcontroller. The AB209 Turbidity Sensor Module functions to detect water turbidity. The function of the ADC is to change the amount of electrical voltage resulting from the AB209 Turbidity Sensor Module into a digital quantity which is then transmitted to the ATMega328 microcontroller to be processed into a digital display on the LCD. The results of the research are that a water turbidity measurement tool can be made with a good level of accuracy, namely 99.98%.

Downloads

Download data is not yet available.

References

Fahril, M. A., Rangkuti, N. A., & Nila, I. R. (2022). Pengujian Alat Pendeteksi Tingkat Kekeruhan Air Berbasis Mikrokontroller Atmega 8535 Menggunakan Sensor Turbidity. Jurnal Hadron, 4(1), 13-19.

Faisal, M., Harmadi, H., & Puryanti, D. (2016). Perancangan Sistem Monitoring Tingkat Kekeruhan Air Secara Realtime Menggunakan Sensor TSD-10. Jurnal Ilmu Fisika, 8(1), 9-16. DOI: https://doi.org/10.25077/jif.8.1.9-16.2016

Fisher, D. K., & Kebede, H. (2010). A low-cost microcontroller-based system to monitor crop temperature and water status. Computers and electronics in agriculture, 74(1), 168-173. https://doi.org/10.1016/j.compag.2010.07.006 DOI: https://doi.org/10.1016/j.compag.2010.07.006

Frankowiak, M., Grosvenor, R., & Prickett, P. (2005). A review of the evolution of microcontroller-based machine and process monitoring. International journal of machine tools and manufacture, 45(4-5), 573-582. https://doi.org/10.1016/j.ijmachtools.2004.08.018 DOI: https://doi.org/10.1016/j.ijmachtools.2004.08.018

Gravina, R., Alinia, P., Ghasemzadeh, H., & Fortino, G. (2017). Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges. Information Fusion, 35, 68-80. https://doi.org/10.1016/j.inffus.2016.09.005 DOI: https://doi.org/10.1016/j.inffus.2016.09.005

Monica, D. (2021). Pengukuran Nilai Kekeruhan Air Pdam Tirta Keumuening Kota Langsa. Jurnal Hadron, 3(1), 19-22. DOI: https://doi.org/10.33059/jh.v3i1.3744

Muthuraman, G., & Sasikala, S. (2014). Removal of turbidity from drinking water using natural coagulants. Journal of Industrial and Engineering Chemistry, 20(4), 1727-1731. https://doi.org/10.1016/j.jiec.2013.08.023 DOI: https://doi.org/10.1016/j.jiec.2013.08.023

Nuzula, N. I. (2013). Endarko,“Perancangan dan pembuatan alat ukur kekeruhan air berbasis mikrokontroler ATmega 8535”. Jurnal Sains dan Semi Pomits, 2, 1-5.

Parra, L., Rocher, J., Escrivá, J., & Lloret, J. (2018). Design and development of low cost smart turbidity sensor for water quality monitoring in fish farms. Aquacultural Engineering, 81, 10-18. https://doi.org/10.1016/j.aquaeng.2018.01.004 DOI: https://doi.org/10.1016/j.aquaeng.2018.01.004

Putri, A. O., & Harmadi, H. (2018). Rancang Bangun Alat Ukur Tingkat Kekeruhan Air Menggunakan Fotodioda Array Berbasis Mikrokontroler ATMega328. Jurnal Fisika Unand, 7(1), 27-32. DOI: https://doi.org/10.25077/jfu.7.1.27-32.2018

Rachmansyah, F., Utomo, S. B., & Sumardi, S. (2014). Perancangan dan Penerapan Alat Ukur Kekeruhan Air Menggunakan Metode Nefelometrik pada Instalasi Pengolahan Air dengan Multi Media Card (MMC) sebagai Media Penyimpanan (Studi Kasus di PDAM Jember). Berkala Sainstek, 2(1), 17-21.

Rosiek, S., & Batlles, F. J. (2008). A microcontroller-based data-acquisition system for meteorological station monitoring. Energy Conversion and Management, 49(12), 3746-3754. https://doi.org/10.1016/j.enconman.2008.05.029 DOI: https://doi.org/10.1016/j.enconman.2008.05.029

Sharma, D., Jain, R. K., Sharma, R., Shan, B. P., & Shiney, O. J. (2023). Analysis of BPM/Pulse rate and its correlation with BMI for sprint activity using ATMega328 based Arduino Uno. Materials Today: Proceedings, 80, 3851-3856. https://doi.org/10.1016/j.matpr.2021.07.401 DOI: https://doi.org/10.1016/j.matpr.2021.07.401

Simon, I., Bârsan, N., Bauer, M., & Weimar, U. (2001). Micromachined metal oxide gas sensors: opportunities to improve sensor performance. Sensors and Actuators B: Chemical, 73(1), 1-26. https://doi.org/10.1016/S0925-4005(00)00639-0 DOI: https://doi.org/10.1016/S0925-4005(00)00639-0

Suliyani, N., Suciyati, S. W., Pauzi, G. A., & Surtono, A. (2021). Rancang Bangun Alat Ukur Kekeruhan Air Menggunakan Fototransistor dan LED Inframerah Berbasis Arduino Uno. Journal of Energy, Material, and Instrumentation Technology, 2(2), 39-47. DOI: https://doi.org/10.23960/jemit.v2i2.53

Supardi, I. W., Wibawa, I. M. S., Rimawan, I. G. A., Laksono, A., & Kunthi, M. R. (2018). Digital measuring equipment of meat water connection with copper electrode sensor based on microcontroller AT89S52. International Journal of Physical Sciences and Engineering, 2(3), 29–35. https://doi.org/10.29332/ijpse.v2n3.180 DOI: https://doi.org/10.29332/ijpse.v2n3.180

Sutrisno, A., Ueda, M., Abe, Y., Nakazawa, M., & Miyatake, K. (2004). A chitinase with high activity toward partially N-acetylated chitosan from a new, moderately thermophilic, chitin-degrading bacterium, Ralstonia sp. A-471. Applied microbiology and biotechnology, 63, 398-406. DOI: https://doi.org/10.1007/s00253-003-1351-2

Yang, H. J., Usman, M., & Hanif, A. (2021). Suitability of liquid crystal display (LCD) glass waste as supplementary cementing material (SCM): Assessment based on strength, porosity, and durability. Journal of Building Engineering, 42, 102793. https://doi.org/10.1016/j.jobe.2021.102793 DOI: https://doi.org/10.1016/j.jobe.2021.102793

Yoo, D. Y., Lee, Y., You, I., Banthia, N., & Zi, G. (2022). Utilization of liquid crystal display (LCD) glass waste in concrete: A review. Cement and Concrete Composites, 130, 104542. https://doi.org/10.1016/j.cemconcomp.2022.104542 DOI: https://doi.org/10.1016/j.cemconcomp.2022.104542

Published

2024-11-28

How to Cite

Supardi, I. W., Rupiasih, N. Y., Putra, A. A. G. M., & Djlantik, A. A. A. P. P. (2024). Manufacturing a water turffity measuring equipment using the AB209 module sensor based on the ATMega328 microcontroller. International Journal of Physical Sciences and Engineering, 8(3), 36–41. https://doi.org/10.53730/ijpse.v8n3.15383

Issue

Section

Peer Review Articles

Most read articles by the same author(s)