Photovoltaic system to improve energy efficiency

https://doi.org/10.53730/ijpse.v6n1.3146

Authors

  • Dolores Elina Amen Carrillo Maestría de la Universidad Técnica de Manabí, Portoviejo, Ecuador
  • Napoleón Ovidio Beltrán Flores Maestría de la Universidad Técnica de Manabí, Portoviejo, Ecuador
  • Jose Fabian Jumbo Roman Maestría de la Universidad Técnica de Manabí, Portoviejo, Ecuador
  • Mishel Beatriz Barcia Medranda Maestría de la Universidad Técnica de Manabí, Portoviejo, Ecuador
  • Carlos Alexander Hoppe Alvarado Maestría de la Universidad Técnica de Manabí, Portoviejo, Ecuador

Keywords:

energy efficiency, energy quality, microgrids, photovoltaic system, self-consumption systems

Abstract

Renewable energy sources are generation alternatives that can be used for different applications; Systems that take advantage of photovoltaic solar energy can be used to reduce energy demand during daytime hours, electrification of isolated homes, among other applications. In Ecuador there is a high potential for solar radiation, which can also be applied to project systems connected to the electricity grid or in the form of distributed generation, the objective of the research is to demonstrate the potential for solar radiation that affects the province of Manabí, specifically in the site "El Aromo" in the rural area of the city of Manta there is a land that provides the necessary conditions for the installation of a photovoltaic plant, for the development of the work the bibliographic review method was applied, the inductive deductive and synthesis analysis, the results that can be used were obtained from the installation that exists as a base of the 140 houses that consist in the field that belonged to the old project of Refinery del Pacífico.

Downloads

Download data is not yet available.

References

Arafet, CMG, Cano, IM, Rivera, RR, Gámez, MR, & Pérez, AV (2014). Feasibility of installing grid-connected photovoltaic systems; Feasibility of installation of connected photovoltaic systems to grid. Energy Engineering , 35 (2), 141-148.

Arauz, W. M. S., Gámez, M. R., Pérez, A. V., Castillo, G. A. L., & Alava, L. A. C. (2017). The future of micro-grids in Ecuador. International Journal of Physical Sciences and Engineering, 1(3), 1-8.

Arcentales, G. A. T., Gordin, R. G., Perez, A. V., & Rodriguez, A. Z. (2017). Climatization, energy efficiency and environmental protection. International Research Journal of Engineering, IT & Scientific Research, 3(2), 59-66. Retrieved from https://sloap.org/journals/index.php/irjeis/article/view/532

Aste, N., Caputo, P., Del Pero, C., Ferla, G., Huerto-Cardenas, H. E., Leonforte, F., & Miglioli, A. (2020). A renewable energy scenario for a new low carbon settlement in northern Italy: Biomass district heating coupled with heat pump and solar photovoltaic system. Energy, 206, 118091. https://doi.org/10.1016/j.energy.2020.118091

Etxeberria, A., Vechiu, I., Camblong, H., & Vinassa, J. M. (2012). Comparison of three topologies and controls of a hybrid energy storage system for microgrids. Energy Conversion and Management, 54(1), 113-121. https://doi.org/10.1016/j.enconman.2011.10.012

Fernández, H., Martínez, A., Guzmán, V., & Gímenez, M. I. (2008, September). A simple, low cost design using current feedback to improve the efficiency of a MPPT-PV system for isolated locations. In 2008 13th International Power Electronics and Motion Control Conference (pp. 1947-1950). IEEE.

García, A., (1991). "An approach to the dynamic mapping of land occupation: Test in the Area of Mondéjar (Guadalajara) ", Geographical Studies Magazine, Madrid, October-December 1991, vol.52, n.205, p. 625-652, e-ISSN 1988-8546.

Hafez, O., & Bhattacharya, K. (2012). Optimal planning and design of a renewable energy based supply system for microgrids. Renewable Energy, 45, 7-15. https://doi.org/10.1016/j.renene.2012.01.087

Houssamo, I., Locment, F., & Sechilariu, M. (2013). Experimental analysis of impact of MPPT methods on energy efficiency for photovoltaic power systems. International Journal of Electrical Power & Energy Systems, 46, 98-107. https://doi.org/10.1016/j.ijepes.2012.10.048

Limones-Pozos, C. A., Martínez-Rodríguez, P. R., Sosa, J. M., Vázquez, G., & Izaguirre-Vera, A. (2018, November). Design and analysis of a single-phase transformerless multilevel 7L-TT-HB cascade inverter for renewable energy applications. In 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC) (pp. 1-6). IEEE.

López, C. S. P., & Frontini, F. (2014). Energy efficiency and renewable solar energy integration in heritage historic buildings. Energy Procedia, 48, 1493-1502. https://doi.org/10.1016/j.egypro.2014.02.169

Marucci, A., & Cappuccini, A. (2016). Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions. Applied Energy, 170, 362-376. https://doi.org/10.1016/j.apenergy.2016.02.138

Omrany, H., Ghaffarianhoseini, A., Ghaffarianhoseini, A., Raahemifar, K., & Tookey, J. (2016). Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review. Renewable and sustainable energy reviews, 62, 1252-1269. https://doi.org/10.1016/j.rser.2016.04.010

Pérez, AV, Araus, WMS, Viteri, CGV, & Gámez, MR (2020). A model for sustainable energy development. The university, geography and endogenous resources / A model for sustainable energy development. The university, geography and endogenous resources. Venezuelan Geographic Magazine , 61 (1), 220-234.

Poblano Ortiz, E. S., Romantchik Kriuchkova, E., Hahn Schlam, F. F., Betanzos Castillo, F., & Martínez Castellanos, T. (2015). Comparison of costs of photovoltaic systems for greenhouses and network electricity expenses. Revista mexicana de ciencias agrícolas, 6(4), 679-693.

Radomes Jr, A. A., & Arango, S. (2015). Renewable energy technology diffusion: an analysis of photovoltaic-system support schemes in Medellín, Colombia. Journal of Cleaner Production, 92, 152-161. https://doi.org/10.1016/j.jclepro.2014.12.090

Rojas-Hernández, I., & Lizana Moreno, F. (2018). Energy recovery time for photovoltaic systems based on crystalline silicon in Costa Rica. Energy Engineering , 39 (3), 195-202.

Santosa, I. G., & Yusuf, M. (2017). The application of a dryer solar energy hybrid to decrease workload and increase dodol production in Bali. International Research Journal of Engineering, IT & Scientific Research, 3(6), 99-106. Retrieved from https://sloap.org/journals/index.php/irjeis/article/view/14

Sornichero, L.J. (2014). Renewable energy. Didactic proposal. Ribalta: Quaderns d'didactic application and research , (21), 23-32.

Toledo, O. M., Oliveira Filho, D., & Diniz, A. S. A. C. (2010). Distributed photovoltaic generation and energy storage systems: A review. Renewable and Sustainable Energy Reviews, 14(1), 506-511. https://doi.org/10.1016/j.rser.2009.08.007

Zhang, L., Gari, N., & Hmurcik, L. V. (2014). Energy management in a microgrid with distributed energy resources. Energy Conversion and Management, 78, 297-305. https://doi.org/10.1016/j.enconman.2013.10.065

Published

2022-01-16

How to Cite

Carrillo, D. E. A., Flores, N. O. B., Roman, J. F. J., Medranda, M. B. B., & Alvarado, C. A. H. (2022). Photovoltaic system to improve energy efficiency. International Journal of Physical Sciences and Engineering, 6(1), 18–26. https://doi.org/10.53730/ijpse.v6n1.3146

Issue

Section

Peer Review Articles