Design of a photovoltaic system to cover the energy demand of a home in the Rocafuerte Canton, Manabí Province

https://doi.org/10.53730/ijpse.v6n2.9286

Authors

  • Michael Anthony Carbo-Mendoza Universidad Técnica de Manabí, Portoviejo, Ecuador
  • Luis Fernando Cabrera-González Universidad Técnica de Manabí, Portoviejo, Ecuador
  • Irvin Frank Ponce-Reyes Universidad Técnica de Manabí, Portoviejo, Ecuador
  • Luis Antonio Bazurto-Briones Universidad Técnica de Manabí, Portoviejo, Ecuador

Keywords:

distributed generation, MPPT technology, photovoltaic system, interconnected grid, solar irradiation

Abstract

In the present work, a photovoltaic system connected to the network and integrated into a house in the Rocafuerte canton, province of Manabí, is designed. For its development, the computer tool for sizing photovoltaic systems PVsyst was used, with which the annual production of electrical energy for the 8.8 kWp system was determined, losses were also analyzed due to the main factors such as shading, wiring, power electronics, photovoltaic array, angle of inclination, temperature and by the irradiance of the sun. In addition, the main parameters of the installed system provided data for planning electricity consumption. The results showed that the electrical energy generated can cover 84% of the demand of the house, in infrequent conditions, but with a projection to cover the entire demand in the months of less consumption. Which constitutes an alternative for the generation and obtaining of energy, taking advantage of available spaces in the houses.

Downloads

Download data is not yet available.

References

Alsema, E. A., & Nieuwlaar, E. (2000). Energy viability of photovoltaic systems. Energy policy, 28(14), 999-1010. https://doi.org/10.1016/S0301-4215(00)00087-2

ARCERNNR. (2021). Regulatory framework of Distributed Generation for self-supply of regulated consumers of electrical energy. Resolution No. ARCERNNR-013/2021.

Chao, K. H., Ho, S. H., & Wang, M. H. (2008). Modeling and fault diagnosis of a photovoltaic system. Electric Power Systems Research, 78(1), 97-105. https://doi.org/10.1016/j.epsr.2006.12.012

Garcia C. (2015). Simulation of photovoltaic installations with pvsyst. Higher Polytechnic School of Jaén.

García, A. & Álvarez, R. (2014). Comparative parameters of photoelectric cells for power generation: test bench implementation using DSP. Energy vol.35 no.3 Havana Sep.-Dec.

Ghadami, N., Gheibi, M., Kian, Z., Faramarz, M. G., Naghedi, R., Eftekhari, M., ... & Tian, G. (2021). Implementation of solar energy in smart cities using an integration of artificial neural network, photovoltaic system and classical Delphi methods. Sustainable Cities and Society, 74, 103149. https://doi.org/10.1016/j.scs.2021.103149

Hernández, J. C., De la Cruz, J., & Ogayar, B. J. E. P. S. R. (2012). Electrical protection for the grid-interconnection of photovoltaic-distributed generation. Electric Power Systems Research, 89, 85-99. https://doi.org/10.1016/j.epsr.2012.03.002

Krauter, S., & Rüther, R. (2004). Considerations for the calculation of greenhouse gas reduction by photovoltaic solar energy. Renewable energy, 29(3), 345-355. https://doi.org/10.1016/S0960-1481(03)00251-9

Li, J., Ward, J. K., Tong, J., Collins, L., & Platt, G. (2016). Machine learning for solar irradiance forecasting of photovoltaic system. Renewable energy, 90, 542-553. https://doi.org/10.1016/j.renene.2015.12.069

Makrides, G., Zinsser, B., Norton, M., Georghiou, G. E., Schubert, M., & Werner, J. H. (2010). Potential of photovoltaic systems in countries with high solar irradiation. Renewable and Sustainable energy reviews, 14(2), 754-762. https://doi.org/10.1016/j.rser.2009.07.021

Mejia, AE, Torres, CA, & Isaza, RAH (2009). Connection of a photovoltaic system to the electrical network. Scientia et technica , 15 (43), 31-36.

Mejia, F., Kleissl, J., & Bosch, J. L. (2014). The effect of dust on solar photovoltaic systems. Energy Procedia, 49, 2370-2376. https://doi.org/10.1016/j.egypro.2014.03.251

Mieles-Mieles, GJ, Llosas-Albuerne, Y., & Vélez-Quiroz, AM (2021). Results of a photovoltaic design in the canton of Olmedo-Province of Manabí. Pole of Knowledge , 6 (9), 2268-2279.

Muñoz, J., Rojas, M., & Barreto, C. (2018). Incentive for Distributed Generation in Ecuador. Ingenius Scientific and technological magazine.

Osorio Laurencio, L., & Montero Laurencio, R. (2016). Energy analysis of a photovoltaic system integrated to a horizontal flat roof. Energy Engineering , 37 (1), 45-54.

Parvez, M., Elias, M. F. M., Rahim, N. A., & Osman, N. (2016). Current control techniques for three-phase grid interconnection of renewable power generation systems: A review. Solar Energy, 135, 29-42. https://doi.org/10.1016/j.solener.2016.05.029

PVsyst 7.2 (2022). PVsyst presents results in the form of a full report, specific graphs and tables, and data can be exported for use in other software.

Rodríguez, M., & Vázquez A. (2018). Photovoltaic Energy In The Province Of Manabí. Technical University of Manabi. UTM editions.

Salazar-Peralta, A., Pichardo-S, A., & Pichardo-S, U. (2016). Solar energy, an alternative for the generation of renewable energy. Journal of Research and Development , 2 (5), 11-20.

Sánchez. J. (2015). The Ecuadorian Energy Sector and the Diversification of the Energy Matrix: The Manta Case. Juarez University of the State of Durango. Editorial Ujed. 1st Edition. Durango.

Santosa, I. G., & Yusuf, M. (2017). The application of a dryer solar energy hybrid to decrease workload and increase dodol production in Bali. International Research Journal of Engineering, IT & Scientific Research, 3(6), 99-106. Retrieved from https://sloap.org/journals/index.php/irjeis/article/view/14

Solaris-Shop. (2022). Solar Panel Products and Kits.

Tawalbeh, M., Al-Othman, A., Kafiah, F., Abdelsalam, E., Almomani, F., & Alkasrawi, M. (2021). Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Science of The Total Environment, 759, 143528. https://doi.org/10.1016/j.scitotenv.2020.143528

Veliz, J. K. M., Gualán, J. F. V., Mateo, F. A. L., Veléz, A. A. G., & Gámez, M. R. (2021). Isolated photovoltaic system for house: pre-sizing. International Research Journal of Engineering, IT & Scientific Research, 7(1), 25-32. https://doi.org/10.21744/irjeis.v7n1.1225

Webgeneve. (2022). Carbon balance tool.

Webgeneve. (2022). General description of the PVsyst software.

Published

2022-06-19

How to Cite

Carbo-Mendoza, M. A., Cabrera-González, L. F., Ponce-Reyes, I. F., & Bazurto-Briones, L. A. (2022). Design of a photovoltaic system to cover the energy demand of a home in the Rocafuerte Canton, Manabí Province. International Journal of Physical Sciences and Engineering, 6(2), 68–81. https://doi.org/10.53730/ijpse.v6n2.9286

Issue

Section

Peer Review Articles