Synthesis and molecular docking studies of new chromane (2-(4-hydroxybenzyl) 3,5,7-trihydroxychroma-4-one) and its O-substituted analogues

https://doi.org/10.53730/ijhs.v6nS4.11421

Authors

  • Sonia Kamboj Associate professor Department of pharmacy.Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar Deemed (To Be) University, Mullana-133203, Haryana, India & Ch. Devi Lal College of Pharmacy, Jagadhri-135003, Haryana, India
  • Manu Sharma Professor, Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar Deemed (To Be) University, Mullana-133203, Haryana, India
  • Randhir Singh Associate professor, Department of Pharmacology, Central University of Punjab, Bathinda. 151001

Keywords:

chroman-4-one, anti-inflammatory, analgesic, molecular docking, COX 2

Abstract

A series of 3-(O-R) substituted compounds (SI-SX) of 2-(4-hydroxybenzyl) 3,5,7-trihydroxychroma-4-one were synthesized from easily accessible starting materials such as, p-hydroxybenzaldehyde and ethyl bromopyruvate. All the ten derivatives (SI-SX) were synthesized in appropriate yields, and they were characterized by IR, 1H NMR and C NMR. Molecular docking of all the derivatives were performed using Molegro virtual docker tool 6.0.2 (MVD) tool. CYCLOOXYGENASE-2 (COX2) or PROSTAGLANDIN SYNTHASE-2  was taken as the target protein and was downloaded from Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) (https://www.rcsb.org/structure/1CX2)  with PDBID: ICX2, 10.2210/pdb1CX2/pdb). The 3D images of ligand protein interactions were extracted using the software, MVD 6.0.2 visualizer interface. Among all the derivatives, SII, SVI has shown good moldock score values -77.59 and -75.75 with high number of interactions (09) towards the target protein, indicating its ability to act as an anti-inflammatory and analgesic activity.

Downloads

Download data is not yet available.

References

Ali, K. A., Abdelhafez, N. A. A., Ragab, E. A., Ibrahim, A. A., & Amr, A. E. (2015). Design and synthesis of novel fused heterocycles using 4-chromanone as synthon. Russian Journal of General Chemistry, 85(12), 2853-2860.

Alipour, E., Mousavi, Z., Safaei, Z., Pordeli, M., Safavi, M., Firoozpour, L., ... & Foroumadi, A. (2014). Synthesis and cytotoxic evaluation of some new [1, 3] dioxolo [4, 5-g] chromen-8-one derivatives. DARU Journal of Pharmaceutical Sciences, 22(1), 1-6.

Alizadeh, B. H., Saeedi, M., Dehghan, G., Foroumadi, A., & Shafiee, A. (2015). Synthesis of some novel pyrano [2, 3-f] chromenone derivatives. Journal of the Iranian Chemical Society, 12(4), 605-612.

Alizadeh, S. R., & Ebrahimzadeh, M. A. (2022). O-Substituted Quercetin derivatives: structural classification, drug design, development, and biological activities, a review. Journal of Molecular Structure, 132392.

Christophe Carola H., Ralf Rosskopf M. (2010): Use of chroman-4-one derivatives.: United States Patent application publication., US 2010/0028278 A1,1, 1–24

Gažák, R., Svobodová, A., Psotová, J., Sedmera, P., Přikrylová, V., Walterová, D., & Křen, V. (2004). Oxidised derivatives of silybin and their antiradical and antioxidant activity. Bioorganic & medicinal chemistry, 12(21), 5677-5687.

Hu, C., Zhou, Z., Xiang, Y., Song, X., Wang, H., Tao, K., & Ye, X. (2018). Design, synthesis and anti-inflammatory activity of dihydroflavonol derivatives. Medicinal Chemistry Research, 27(1), 194-205.

Jarapula, R., Gangarapu, K., Manda, S., & Rekulapally, S. (2016). Synthesis, in vivo anti-inflammatory activity, and molecular docking studies of new isatin derivatives. International journal of medicinal chemistry, 2016.

Kamboj, S., & Singh, R. (2021). Chromanone-A prerogative therapeutic scaffold: an overview. Arabian Journal for Science and Engineering, 1-37.

Kaur, N., Kishore, L., & Singh, R. (2016). Antidiabetic effect of new chromane isolated from Dillenia indica L. leaves in streptozotocin induced diabetic rats. Journal of Functional Foods, 22, 547-555.

Kurumbail, R. G., Stevens, A. M., Gierse, J. K., McDonald, J. J., Stegeman, R. A., Pak, J. Y., ... & Stallings, W. C. (1996). Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature, 384(6610), 644-648.

Li H.J., Luan X.H., Zhao Y.M. (2004). Facile synthesis of 3-Omethylquercetin. Chin J Org Chem 24:1619–1621.

Li, N. G., Shi, Z. H., Tang, Y. P., Yang, J. P., & Duan, J. A. (2009). An efficient partial synthesis of 4′-O-methylquercetin via regioselective protection and alkylation of quercetin. Beilstein Journal of Organic Chemistry, 5(1), 60.

Li, N. G., Shi, Z. H., Tang, Y. P., Yang, J. P., Lu, T. L., Zhang, F., ... & Duan, J. A. (2011). Synthetic studies on the construction of 7-O-methylquercetin through regioselective protection and alkylation of quercetin. Chinese Chemical Letters, 22(1), 5-8.

Novoa, R. B. (2021). State of the art and future applications of digital health in Chile. International Journal of Health & Medical Sciences, 4(3), 355-361. https://doi.org/10.31295/ijhms.v4n3.1772

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of nutritional science, 5.

Ratnawati, I. G. A. A., Sutapa, G. N., & Ratini, N. N. (2018). The concentration of radon gas in air-conditioned indoor: Air quality can increase the potential of lung cancer. International Journal of Physical Sciences and Engineering, 2(2), 111–119. https://doi.org/10.29332/ijpse.v2n2.169

Shaikh, M. M., Kruger, H. G., Bodenstein, J., Smith, P., & du Toit, K. (2012). Anti-inflammatory activities of selected synthetic homoisoflavanones. Natural Product Research, 26(16), 1473-1482.

Shi, Z. H., Li, N. G., Tang, Y. P., Shi, Q. P., Tang, H., Li, W., ... & Duan, J. A. (2014). Biological evaluation and SAR analysis of O-methylated analogs of quercetin as inhibitors of cancer cell proliferation. Drug development research, 75(7), 455-462.

Shi, Z. H., Li, N. G., Tang, Y. P., Yang, J. P., & Duan, J. A. (2012). Metabolism-based synthesis, biologic evaluation and SARs analysis ofáO-methylated analogs of quercetin as thrombin inhibitors. European journal of medicinal chemistry, 54, 210-222.

Waller, C. P., Thumser, A. E., Langat, M. K., Crouch, N. R., & Mulholland, D. A. (2013). COX-2 inhibitory activity of homoisoflavanones and xanthones from the bulbs of the Southern African Ledebouria socialis and Ledebouria ovatifolia (Hyacinthaceae: Hyacinthoideae). Phytochemistry, 95, 284-290.

Wang, Q. Q., Shi, J. B., Chen, C., Huang, C., Tang, W. J., & Li, J. (2016). Hesperetin derivatives: synthesis and anti-inflammatory activity. Bioorganic & Medicinal Chemistry Letters, 26(5), 1460-1465.

Widana, I.K., Sumetri, N.W., Sutapa, I.K., Suryasa, W. (2021). Anthropometric measures for better cardiovascular and musculoskeletal health. Computer Applications in Engineering Education, 29(3), 550–561. https://doi.org/10.1002/cae.22202

Winekenstädde, D., Angelis, A., Waltenberger, B., Schwaiger, S., Tchoumtchoua, J., König, S., ... & Stuppner, H. (2015). Phytochemical profile of the aerial parts of Sedum sediforme and anti-inflammatory activity of myricitrin. Natural Product Communications, 10(1), 1934578X1501000122.

Zhao, J.W.; Chen, D.S.; Deng, C.S., et al. (2017): Evaluation of anti-infammatory activity of compounds isolated from the rhizome of Ophiopogon japonicas. BMC Complement Altern. Med. 17(1), 1–12

Zheng, C., Wang, L., Han, T., Xin, H., Jiang, Y., Pan, L., ... & Qin, L. (2016). Pruinosanones AC, anti-inflammatory isoflavone derivatives from Caragana pruinosa. Scientific reports, 6(1), 1-8.

Published

01-08-2022

How to Cite

Kamboj, S., Sharma, M., & Singh, R. (2022). Synthesis and molecular docking studies of new chromane (2-(4-hydroxybenzyl) 3,5,7-trihydroxychroma-4-one) and its O-substituted analogues. International Journal of Health Sciences, 6(S4), 11899–11916. https://doi.org/10.53730/ijhs.v6nS4.11421

Issue

Section

Peer Review Articles