Efficacy of bone graft materials in extraction sockets for implants in maxillary posteriors- An original research
Keywords:
Bone Regeneration, Durapatite, Hydroxyapatites, Calcium SulfateAbstract
Introduction: The aim of this study was to compare the effects of hydroxyapatite (HA), deproteinized bovine bone (DPB), human-derived allogenic bone (HALG), and calcium sulfate (CAP) graft biomaterials placed post extraction for future implant therapy in maxillary 1st molar area placed by guided tissue regeneration. Material and methods: We conducted a retrospective study. Thirty-two subjects were divided into four groups: DPB, HALG, HA, and CAP. Alveolar bone width at specific implant sites were assessed using sagittal and cross‐sectional CBCT images prior grafting and at three subsequent time points. Results: The vertical and horizontal dimensions did not significantly differ between bone grafts at any time point. In addition, there were no statistically significant differences in graft remodeling rates between grafts Conclusion: Deproteinized bovine bone bone blocks showed equivalent volumetric shrinkage rates as man-derived allogenic bone (HALG), and calcium sulfate (CAP) graft biomaterials when used for treating circumscribed bone defects. Therefore, it is not necessary to over‐contour the ridge in the maxillary molars.
Downloads
References
Alam S, Ueki K, Nakagawa K, Marukawa K, Hashiba Y, Yamamoto E et al. Statin-induced bone morphogenetic protein (BMP) 2 expression during bone regeneration: an immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009 Jan;107(1):22-9. https://doi.org/10.1016/j.tripleo.2008.06.025
Broggini N, Bosshardt DD, Jensen SS, Bornstein MM, Wang CC, Buser D. Bone healing around nanocrystalline hydroxyapatite, deproteinized bovine bone mineral, biphasic calcium phosphate, and autogenous bone in mandibular bone defects. J Biomed Mater Res B Appl Biomater. 2015 Oct;103(7):1478-87. https://doi.org/10.1002/jbm.b.33319
Chan O, Coathup MJ, Nesbitt A, Ho CY, Hing KA, Buckland T et al. The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials. Acta Biomater. 2012 Jul;8(7):2788-94. https://doi.org/10.1016/j.actbio.2012.03.038
Coathup MJ, Hing KA, Samizadeh S, Chan O, Fang YS, Campion C et al. Effect of increased strut porosity of calcium phosphate bone graft substitute biomaterials on osteoinduction. J Biomed Mater Res A. 2012 Jun;100(6):1550-5. https://doi.org/10.1002/jbm.a.34094.
Dundar S, Artas G, Acikan I, Yaman F, Kirtay M, Ozupek MF et al. Comparison of the effects of local and systemic zoledronic acid application on mandibular distraction osteogenesis. J Craniofac Surg. 2017 Oct;28(7):e621-5. https://doi.org/10.1097/SCS.0000000000003629
Habibovic P, Gbureck U, Doillon CJ, Bassett DC, Blitterswijk CA, Barralet JE. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials. 2008 Mar;29(7):944-53. https://doi.org/10.1016/j.biomaterials.2007.10.023
Kelly CM, Wilkins RM, Gitelis S, Hartjen C, Watson JT, Kim PT. The use of a surgical grade calcium sulfate as a bone graft substitute: results of a multicenter trial. Clin Orthop Relat Res. 2001 Jan;382:42-50. https://doi.org/10.1097/00003086-200101000-00008
Liao H, Zhong Z, Liu Z, Li L, Ling Z, Zou X. Bone mesenchymal stem cells co-expressing VEGF and BMP-6 genes to combat avascular necrosis of the femoral head. Exp Ther Med. 2018 Jan;15(1):954-62. https://doi.org/10.3892/etm.2017.5455
Manfro R, Fonseca FS, Bortoluzzi MC, Sendyk WR. Comparative, histological and histomorphometric analysis of three anorganic bovine xenogenous bone substitutes: Bio-oss, bone-fill and gen-ox anorganic. J Maxillofac Oral Surg. 2014 Dec;13(4):464-70. https://doi.org/10.1007/s12663-013-0554-z
Maréchal M, Luyten F, Nijs J, Postnov A, Schepers E, Steenberghe D. Histomorphometry and micro-computed tomography of bone augmentation under a titanium membrane. Clin Oral Implants Res. 2005 Dec;16(6):708-14. https://doi.org/10.1111/j.1600-0501.2005.01205.x
Miron RJ, Zhang Q, Sculean A, Buser D, Pippenger BE, Dard M et al. Osteoinductive potential of 4 commonly employed bone grafts. Clin Oral Investig. 2016 Nov;20(8):2259-65. https://doi.org/10.1007/s00784-016-1724-4
Ozdemir H, Ezirganli S, Isa Kara M, Mihmanli A, Baris E. Effects of platelet rich fibrin alone used with rigid titanium barrier. Arch Oral Biol. 2013 May;58(5):537-44. https://doi.org/10.1016/j.archoralbio.2012.09.018
Raposo-Ferreira TM, Salvador RC, Terra EM, Ferreira JH, Vechetti-Junior IJ, Tinucci-Costa M et al. Evaluation of vascular endothelial growth factor gene and protein expression in canine metastatic mammary carcinomas. Microsc Res Tech. 2016 Nov;79(11):1097-104. https://doi.org/10.1002/jemt.22763
Schwartz Z, Somers A, Mellonig JT, Carnes DL Jr, Dean DD, Cochran DL et al. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation is dependent on donor age but not gender. J Periodontol. 1998 Apr;69(4):470-8. https://doi.org/10.1902/jop.1998.69.4.470
Suryasa, I. W., Rodríguez-Gámez, M., & Koldoris, T. (2021). Get vaccinated when it is your turn and follow the local guidelines. International Journal of Health Sciences, 5(3), x-xv. https://doi.org/10.53730/ijhs.v5n3.2938
Walsh WR, Morberg P, Yu Y, Yang JL, Haggard W, Sheath PC et al. Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clin Orthop Relat Res. 2003 Jan;406(406):228-36. https://doi.org/10.1097/00003086-200301000-00033
Wei L, Miron RJ, Shi B, Zhang Y. Osteoinductive and osteopromotive variability among different demineralized bone allografts. Clin Implant Dent Relat Res. 2015 Jun;17(3):533-42. https://doi.org/10.1111/cid.12118
Yuan H, Fernandes H, Habibovic P, Boer J, Barradas AM, Ruiter A et al. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci USA. 2010 Aug;107(31):13614-9. https://doi.org/10.1073/pnas.1003600107
Published
How to Cite
Issue
Section
Copyright (c) 2022 International journal of health sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.