Drug delivery systems for osteogenic disorders utilizing green nanotechnology
Keywords:
Green nanotechnology, drug delivery systems, osteogenic disorders, nanomaterials, bone regeneration, environmentally friendly synthesisAbstract
Background: The skeletal system, crucial for structural support, movement, and various metabolic processes, is continually remodeled through the balanced activity of osteoblasts, osteocytes, and osteoclasts. Disruptions in this balance lead to bone disorders, including osteoporosis and osteogenesis imperfecta, necessitating effective therapeutic strategies. Traditional drug delivery systems face challenges such as poor targeting efficiency and systemic toxicity. Aim: This review examines the application of green nanotechnology in developing advanced drug delivery systems for treating osteogenic disorders. Green nanotechnology focuses on using environmentally friendly methods to synthesize nanomaterials (NMs) that enhance drug delivery and promote bone regeneration while minimizing toxicity. Methods: The review evaluates various nanotechnology-based drug delivery systems, including bisphosphonates, tetracyclines, oligopeptides, and aptamers, and their applications in bone health. It highlights the limitations of conventional approaches and the potential of green nanotechnology to overcome these challenges. The review covers polysaccharide-based, protein-based, calcium-based, and silica-based green nanotechnologies and their roles in improving drug delivery for bone disorders. Results: Green nanotechnology has demonstrated significant promise in enhancing drug delivery for osteogenic disorders. Polysaccharide-based systems, such as heparin and chitosan nanocomplexes, offer improved targeting and drug release capabilities. Protein-based technologies, including silk sericin and collagen, support bone repair and regeneration.
Downloads
References
Docherty, B. (2007). Skeletal system. Part one–bone structure. Nursing Times, 103(28–29). Available from http://www.ncbi.nlm.nih.gov/pubmed/17319304
Frassica, F. J., Inoue, N., Virolainen, P., et al. (1997). Skeletal system: Biomechanical concepts and relationships to normal and abnormal conditions. Seminars in Nuclear Medicine, 27(4), 321–327. Available from http://www.ncbi.nlm.nih.gov/pubmed/9364641
Raggatt, L. J., & Partridge, N. C. (2010). Cellular and molecular mechanisms of bone remodeling. Journal of Biological Chemistry, 285(33), 25103–25108. Available from http://www.ncbi.nlm.nih.gov/pubmed/20501658
Rowe, P., & Sharma, S. (2019). Physiology, bone remodeling. In StatPearls. Treasure Island, FL: StatPearls Publishing. Available from http://www.ncbi.nlm.nih.gov/pubmed/29763038
U.S. Department of Health and Human Services. (2004). Bone health and osteoporosis: A report of the Surgeon General. Available from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Bone+Health+and+Osteoporosis+A+Report+of+the+Surgeon+General#0
Sinusas, K. (2012). Osteoarthritis: Diagnosis and treatment. American Family Physician, 85(1), 49–56. Available from http://www.ncbi.nlm.nih.gov/pubmed/22230308
Chen, D., Shen, J., Zhao, W., et al. (2017). Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Research, 5, 16044. Available from http://www.ncbi.nlm.nih.gov/pubmed/28149655
Rosen, C. J. (2000). The epidemiology and pathogenesis of osteoporosis. In Endotext. MDText.com, Inc. Available from http://www.ncbi.nlm.nih.gov/pubmed/25905357
Sözen, T., Özışık, L., & Başaran, N. Ç. (2017). An overview and management of osteoporosis. European Journal of Rheumatology, 4(1), 46–56. Available from http://www.ncbi.nlm.nih.gov/pubmed/28293453
Fritz, J. M., & McDonald, J. R. (2008). Osteomyelitis: Approach to diagnosis and treatment. Physical Medicine and Rehabilitation Clinics of North America, 36, 367–381. Available from http://www.ncbi.nlm.nih.gov/pubmed/19652694
Momodu, I. I., & Savaliya, V. (2019). Osteomyelitis. In StatPearls. StatPearls Publishing. Available from http://www.ncbi.nlm.nih.gov/pubmed/30335283
Durfee, R. A., Mohammed, M., & Luu, H. H. (2016). Review of osteosarcoma and current management. Rheumatology and Therapy, 3(3), 221–243. Available from http://www.ncbi.nlm.nih.gov/pubmed/27761754
Misaghi, A., Goldin, A., Awad, M., et al. (2018). Osteosarcoma: A comprehensive review. SICOT-J, 4, 12. Available from http://www.ncbi.nlm.nih.gov/pubmed/29629690
van Dijk, F. S., Cobben, J. M., Kariminejad, A., et al. (2011). Osteogenesis imperfecta: A review with clinical examples. Molecular Syndromology, 2(1), 1–20. Available from http://www.ncbi.nlm.nih.gov/pubmed/22570641
Sam, J. E., & Dharmalingam, M. (2017). Osteogenesis imperfecta. Indian Journal of Endocrinology and Metabolism, 21(6), 903–908. Available from http://www.ncbi.nlm.nih.gov/pubmed/29285457
Stapleton, M., Sawamoto, K., Alméciga-Díaz, C. J., et al. (2017). Development of bone targeting drugs. International Journal of Molecular Sciences, 18(6), 1345. https://doi.org/10.3390/ijms18061345
Luhmann, T., Germershaus, O., Groll, J., et al. (2012). Bone targeting for the treatment of osteoporosis. Journal of Controlled Release, 161(2), 198–213. https://doi.org/10.1016/j.jconrel.2012.03.030
Carbone, E. J., Rajpura, K., Allen, B. N., et al. (2017). Osteotropic nanoscale drug delivery systems based on small molecule bone-targeting moieties. Nanomedicine: Nanotechnology, Biology, and Medicine, 13(1), 37–47. https://doi.org/10.1016/j.nano.2016.10.005
Drake, M. T., Clarke, B. L., & Khosla, S. (2008). Bisphosphonates: Mechanism of action and role in clinical practice. Mayo Clinic Proceedings, 83(9), 1032–1045. https://doi.org/10.4065/83.9.1032
Heymann, D. (2010). Bisphosphonates and bone diseases: Past, present, and future. Current Pharmaceutical Design, 16(25), 2948–2949. https://doi.org/10.2174/13892011079317608
Uludag, H. (2002). Bisphosphonates as a foundation of drug delivery to bone. Current Pharmaceutical Design, 8(21), 1929–1944. Available from http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1381-6128&volume=8&issue=21&spage=1929
Cole, L. E., Vargo-Gogola, T., & Roeder, R. K. (2016). Targeted delivery to bone and mineral deposits using bisphosphonate ligands. Advanced Drug Delivery Reviews, 99, 12–27. Available from https://www.sciencedirect.com/science/article/pii/S0169409X15002306
Billon-Chabaud, A., Gouyette, A., Merle, C., et al. (2010). Development of bisphosphonates controlled delivery systems for bone implantation: Influence of the formulation and process used on in vitro release. Journal of Materials Science: Materials in Medicine, 21(5), 1599–1604. Available from http://link.springer.com/10.1007/s10856-010-4012-x
Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews, 65(2), 232–260.
Demers, P., Fraser, D., Goldbloom, R. B., et al. (1968). Effects of tetracyclines on skeletal growth and dentition. A report by the Nutrition Committee of the Canadian Paediatric Society. Canadian Medical Association Journal, 99(15), 849–854.
Payne, J. B., & Golub, L. M. (2011). Using tetracyclines to treat osteoporotic/osteopenic bone loss: From the basic science laboratory to the clinic. Pharmacology & Therapeutics, 63(2), 121–129. https://doi.org/10.1016/j.phrs.2011.02.003
Kanellakopoulou, K., & Giamarellos-Bourboulis, E. J. (2000). Carrier systems for the local delivery of antibiotics in bone infections. Drugs, 59(6), 1223–1232. Available from http://link.springer.com/10.2165/00003495-200059060-00003
Mombelli, A., Feloutzis, A., Bragger, U., et al. (2001). Treatment of peri-implantitis by local delivery of tetracycline. Clinical, microbiological, and radiological results. Clinical Oral Implants Research, 12(3), 287–294. Available from http://doi.wiley.com/10.1034/j.1600-0501.2001.012004287.x
Domingues, Z. R., Cortés, M. E., Gomes, T. A., et al. (2004). Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with β-cyclodextrin. Biomaterials, 25(2), 327–333. Available from https://www.sciencedirect.com/science/article/pii/S0142961203005246
Wang, H., Liu, J., Tao, S., et al. (2015). Tetracycline-grafted PLGA nanoparticles as a bone-targeting drug delivery system. International Journal of Nanomedicine, 10, 5671–5685. Available from http://www.ncbi.nlm.nih.gov/pubmed/26388691
Xie, Y., Liu, C., Huang, H., et al. (2018). Bone-targeted delivery of simvastatin-loaded PEG-PLGA micelles conjugated with tetracycline for osteoporosis treatment. Drug Delivery and Translational Research, 8(6), 1090–1102. Available from http://link.springer.com/10.1007/s13346-018-0561-1
Takahashi-Nishioka, T., Yokogawa, K., Tomatsu, S., et al. (2008). Targeted drug delivery to bone: Pharmacokinetic and pharmacological properties of acidic oligopeptide-tagged drugs. Current Drug Discovery Technologies, 5(1), 39–48.
Sekido, T., Sakura, N., Higashi, Y., et al. (2001). Novel drug delivery system to bone using acidic oligopeptide: Pharmacokinetic characteristics and pharmacological potential. Journal of Drug Targeting, 9(2), 111–121. https://doi.org/10.3109/10611860108997922
Sekido, T., Sakura, N., Higashi, Y., et al. (2001). Novel drug delivery system to bone using acidic oligopeptide: Pharmacokinetic characteristics and pharmacological potential. Journal of Drug Targeting, 9(2), 111–121. Available from http://www.tandfonline.com/doi/full/10.3109/10611860108997922
Ishizaki, J., Waki, Y., Takahashi-Nishioka, T., et al. (2009). Selective drug delivery to bone using acidic oligopeptides. Journal of Bone and Mineral Metabolism, 27(1), 1–8. Available from http://link.springer.com/10.1007/s00774-008-0004-z
Miyamoto, K., Takahashi-Nishioka, T., Yokogawa, K., et al. (2008). Targeted drug delivery to bone: Pharmacokinetic and pharmacological properties of acidic oligopeptide-tagged drugs. Current Drug Discovery Technologies, 5(1), 39–48. Available from http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1570-1638&volume=5&issue=1&spage=39
Zhou, J., & Rossi, J. (2017). Aptamers as targeted therapeutics: Current potential and challenges. Nature Reviews Drug Discovery, 16(3), 181–202. Available from http://www.ncbi.nlm.nih.gov/pubmed/27807347
Newman, M. R., & Benoit, D. S. (2016). Local and targeted drug delivery for bone regeneration. Current Opinion in Biotechnology, 40, 125–132. Available from http://www.ncbi.nlm.nih.gov/pubmed/27064433
Chen, L., He, W., Jiang, H., et al. (2018). In vivo SELEX of bone targeting aptamer in prostate cancer bone metastasis model. International Journal of Nanomedicine, 14, 149–159. Available from https://www.dovepress.com/in-vivo-selex-of-bone-targeting-aptamer-in-prostate-cancer-bone-metast-peer-reviewed-article-IJN
Feng, X., & McDonald, J. M. (2011). Disorders of bone remodeling. Annual Review of Pathology: Mechanisms of Disease, 6, 121–145. Available from http://www.ncbi.nlm.nih.gov/pubmed/20936937
Xinluan, W., Yuxiao, L., Helena, N. H., et al. (2015). Systemic drug delivery systems for bone tissue regeneration: A mini review. Current Pharmaceutical Design, 21(12), 1575–1583. Available from http://www.ncbi.nlm.nih.gov/pubmed/25594406
Alencastre, I., Sousa, D., Alves, C., et al. (2016). Delivery of pharmaceutics to bone: Nanotechnologies, high-throughput processing, and in silico mathematical models. European Cells and Materials, 31, 355–381.
Walmsley, G. G., McArdle, A., Tevlin, R., et al. (2015). Nanotechnology in bone tissue engineering. Nanomedicine: Nanotechnology, Biology, and Medicine, 11(5), 1253–1263. Available from http://www.ncbi.nlm.nih.gov/pubmed/25791811
Yi, H., Ur Rehman, F., Zhao, C., et al. (2016). Recent advances in nano scaffolds for bone repair. Bone Research, 4(1), 16050. Available from http://www.ncbi.nlm.nih.gov/pubmed/28018707
Mostafavi, E., Soltantabar, P., & Webster, T. J. (2019). Nanotechnology and picotechnology: A new arena for translational medicine. In Biomaterials in Translational Medicine (pp. 191–212). Academic Press. Available from https://www.sciencedirect.com/science/article/pii/B9780128134771000098
Chun, Y. W., & Webster, T. J. (2009). The role of nanomedicine in growing tissues. Annals of Biomedical Engineering, 37(11), 2034–2047.
Cheng, H., Chawla, A., Yang, Y., et al. (2017). Development of nanomaterials for bone-targeted drug delivery. Drug Discovery Today, 22(8), 1336–1350. Available from http://www.ncbi.nlm.nih.gov/pubmed/28487069
Maeda, H. (2012). Macromolecular therapeutics in cancer treatment: The EPR effect and beyond. Journal of Controlled Release, 164(2), 138–144. Available from http://www.ncbi.nlm.nih.gov/pubmed/22595146
Bose, S., & Tarafder, S. (2012). Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review. Acta Biomaterialia, 8(4), 1401–1421. https://doi.org/10.1016/j.actbio.2011.12.013
Bosco, R., Iafisco, M., Tampieri, A., et al. (2015). Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity. Applied Surface Science, 328, 516–524. https://doi.org/10.1016/j.apsusc.2014.12.008
Yi, C., Liu, D., Fong, C. C., et al. (2010). Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano, 4(11), 6439–6448. https://doi.org/10.1021/nn101492b
Ghosh, P., Han, G., De, M., et al. (2008). Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews, 60(11), 1307–1315. https://doi.org/10.1016/j.addr.2008.03.014
Mehranfar, S., Abdi Rad, I., Mostafavi, E., et al. (2019). The use of stromal vascular fraction (SVF), platelet-rich plasma (PRP), and stem cells in the treatment of osteoarthritis: An overview of clinical trials. Cells and Nanomedicine Biotechnology, 47(6), 882–890. https://doi.org/10.2174/1389201026666191023131
Lee, D., Heo, D. N., Kim, H. J., et al. (2016). Inhibition of osteoclast differentiation and bone resorption by bisphosphonate-conjugated gold nanoparticles. Scientific Reports, 6, 31645. https://doi.org/10.1038/srep31645
Behzadi, S., Luther, G. A., Harris, M. B., et al. (2017). Nanomedicine for safe healing of bone trauma: Opportunities and challenges. Biomaterials, 146, 168–182. https://doi.org/10.1016/j.biomaterials.2017.08.035
Yang, L., & Webster, T. J. (2009). Nanotechnology controlled drug delivery for treating bone diseases. Expert Opinion on Drug Delivery, 6(8), 851–864. https://doi.org/10.1517/17425240903117015
Bose, S., Banerjee, D., & Bandyopadhyay, A. (2016). Introduction to biomaterials and devices for bone disorders. In Materials and Devices for Bone Disorders (pp. 1–20). Academic Press. Available from https://www.sciencedirect.com/science/article/pii/B978012802792900001X
Mendonça, G., Mardas, N., & Albrektsson, T. (2008). Advancing dental implant surface technology - from micron- to nanotopography. Biomaterials, 29(28), 3822–3835. https://doi.org/10.1016/j.biomaterials.2008.05.023
Shen, X., Ma, P., Hu, Y., et al. (2016). Alendronate-loaded hydroxyapatite-TiO2 nanotubes for improved bone formation in osteoporotic rabbits. Journal of Materials Chemistry B, 4(8), 1423–1436. https://doi.org/10.1039/C6TB00168B
Tran, N., & Webster, T. J. (2011). Increased osteoblast functions in the presence of hydroxyapatite-coated iron oxide nanoparticles. Acta Biomaterialia, 7(3), 1298–1306. https://doi.org/10.1016/j.actbio.2010.11.019
Butoescu, N., Seemayer, C. A., Foti, M., et al. (2009). Dexamethasone-containing PLGA superparamagnetic microparticles as carriers for the local treatment of arthritis. Biomaterials, 30(10), 1772–1780. https://doi.org/10.1016/j.biomaterials.2008.12.028
Kim, M. H., Na, H. K., Kim, Y. K., et al. (2011). Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano, 5(4), 3568–3576. https://doi.org/10.1021/nn200057k
Argyo, C., Weiss, V., Bräuchle, C., et al. (2014). Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chemistry of Materials, 26(3), 435–451. https://doi.org/10.1021/cm404897t
El-Fiqi, A., Kim, T. H., Kim, M., et al. (2012). Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules. Nanoscale, 4(24), 7475–7482. https://doi.org/10.1039/C2NR33126B
Wu, C., & Chang, J. (2012). Mesoporous bioactive glasses: Structure characteristics, drug/growth factor delivery, and bone regeneration application. Interface Focus, 2(3), 292–306. https://doi.org/10.1098/rsfs.2011.0086
Hu, Y., Cai, K., Luo, Z., et al. (2010). Layer-by-layer assembly of β-estradiol loaded mesoporous silica nanoparticles on titanium substrates and its implication for bone homeostasis. Advanced Materials, 22(37), 4146–4150. https://doi.org/10.1002/adma.201001118
Kose, N., Çaylak, R., Pekşen, C., et al. (2016). Silver ion doped ceramic nanopowder coated nails prevent infection in open fractures: In vivo study. Injury, 47(2), 320–324. https://doi.org/10.1016/j.injury.2015.11.005
Medina-Cruz, D., González, M. U., Tien-Street, W., et al. (2019). Synergic antibacterial coatings combining titanium nanocolumns and tellurium nanorods. Nanomedicine: Nanotechnology, Biology, and Medicine, 17, 36–46. https://doi.org/10.1016/j.nano.2019.01.007
Wang, G., Mostafa, N. Z., Incani, V., et al. (2012). Bisphosphonate-decorated lipid nanoparticles designed as drug carriers for bone diseases. Journal of Biomedical Materials Research Part A, 100(3), 684–693. https://doi.org/10.1002/jbm.a.33012
Zhang, P., Zhang, Y., Gao, M., et al. (2016). Dendrimer-assisted hydrophilic magnetic nanoparticles as sensitive substrates for rapid recognition and enhanced isolation of target tumor cells. Talanta, 161, 925–931. https://doi.org/10.1016/j.talanta.2016.09.004
Akbarzadeh, A., Khalilov, R., Mostafavi, E., et al. (2018). Role of dendrimers in advanced drug delivery and biomedical applications: A review. Experimental Oncology, 40(4), 178–183. https://doi.org/10.32509/exp-oncology.2018-40-4-178
Sun, Y., Ye, X., Cai, M., et al. (2016). Osteoblast-targeting-peptide modified nanoparticle for siRNA/microRNA delivery. ACS Nano, 10(6), 5759–5768. https://doi.org/10.1021/acsnano.6b02130
Huang, L., Wang, X., Cao, H., et al. (2018). A bone-targeting delivery system carrying osteogenic phytomolecule icaritin prevents osteoporosis in mice. Biomaterials, 182, 58–71. https://doi.org/10.1016/j.biomaterials.2018.07.002
Ayre, W. N., Birchall, J. C., Evans, S. L., et al. (2016). A novel liposomal drug delivery system for PMMA bone cements. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104(5), 1510–1524. https://doi.org/10.1002/jbm.b.33411
Riva, R., Ragelle, H., Des Rieux, A., et al. (2011). Chitosan and chitosan derivatives in drug delivery and tissue engineering. Advances in Polymer Science, 244, 19–44. https://doi.org/10.1007/12_2011_145
Kalantari, K., Afifi, A. M., Jahangirian, H., et al. (2019). Biomedical applications of chitosan electrospun nanofibers as a green polymer – review. Carbohydrate Polymers, 207, 588–600. https://doi.org/10.1016/j.carbpol.2018.11.086
Gentile, P., Nandagiri, V. K., Pabari, R., et al. (2015). Influence of parathyroid hormone-loaded PLGA nanoparticles in porous scaffolds for bone regeneration. International Journal of Molecular Sciences, 16(8), 20492–20510. https://doi.org/10.3390/ijms160820492
Gu, W., Wu, C., Chen, J., et al. (2013). Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. International Journal of Nanomedicine, 8, 2305–2314. https://doi.org/10.2147/IJN.S39625
Betancourt, T., Byrne, J. D., Sunaryo, N., et al. (2009). PEGylation strategies for active targeting of PLA/PLGA nanoparticles. Journal of Biomedical Materials Research Part A, 91(1), 263–276. https://doi.org/10.1002/jbm.a.32291
Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces, 75(1), 1–18. https://doi.org/10.1016/j.colsurfb.2009.09.019
Samadikhah, H. R., Majidi, A., Nikkhah, M., et al. (2011). Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes. International Journal of Nanomedicine, 6, 2275–2283. https://doi.org/10.2147/IJN.S2326
Tang, J., Chen, J. Y., Liu, J., et al. (2012). Calcium phosphate embedded PLGA nanoparticles: A promising gene delivery vector with high gene loading and transfection efficiency. International Journal of Pharmaceutics, 431(1–2), 210–221. https://doi.org/10.1016/j.ijpharm.2012.05.012
Short, A. R., Koralla, D., Deshmukh, A., et al. (2015). Hydrogels that allow and facilitate bone repair, remodeling, and regeneration. Journal of Materials Chemistry B, 3(40), 7818–7830. https://doi.org/10.1039/C5TB01085F
Bai, X., Gao, M., Syed, S., et al. (2018). Bioactive hydrogels for bone regeneration. Bioactive Materials, 3(4), 401–417. https://doi.org/10.1016/j.bioactmat.2018.06.00
Shin, S. H., Purevdorj, O., Castano, O., et al. (2012). A short review: Recent advances in electrospinning for bone tissue regeneration. Journal of Tissue Engineering, 3(1), 2041731412443530. https://doi.org/10.1177/2041731412443530
Nedjari, S., Awaja, F., & Altankov, G. (2017). Three-dimensional honeycomb patterned fibrinogen-based nanofibers induce substantial osteogenic response of mesenchymal stem cells. Scientific Reports, 7, 15947. https://doi.org/10.1038/s41598-017-15956-8
Waters, R., Pacelli, S., Maloney, R., et al. (2016). Stem cell secretome-rich nanoclay hydrogel: A dual action therapy for cardiovascular regeneration. Nanoscale, 8(12), 7371–7376. https://doi.org/10.1039/C5NR08660K
Smith, W. R., Hudson, P. W., Ponce, B. A., et al. (2018). Nanotechnology in orthopedics: A clinically oriented review. BMC Musculoskeletal Disorders, 19, 67. https://doi.org/10.1186/s12891-018-1990-8
Busatto, S., Pham, A., Suh, A., et al. (2019). Organotropic drug delivery: Synthetic nanoparticles and extracellular vesicles. Biomedical Microdevices, 21(1), 46. https://doi.org/10.1007/s10544-019-0432-0
Barry, M., Pearce, H., Cross, L., et al. (2016). Advances in nanotechnology for the treatment of osteoporosis. Current Osteoporosis Reports, 14(2), 87–94. https://doi.org/10.1007/s11914-016-0304-5
Jiang, C., Jia, J., & Zhai, S. (2014). Mechanistic understanding of toxicity from nanocatalysts. International Journal of Molecular Sciences, 15(8), 13967–13992. https://doi.org/10.3390/ijms150813967
Ali, A., Zafar, H., Zia, M., et al. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology Science and Applications, 9, 49–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27578966
Borm, P. J. A., Robbins, D., Haubold, S., et al. (2006). The potential risks of nanomaterials: A review carried out for ECETOC. Part Fibre Toxicology, 3, 11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16907977
Stander, L., & Theodore, L. (2011). Environmental implications of nanotechnology – an update. International Journal of Environmental Research and Public Health, 8(2), 470–479. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21556197
Anastas, P., & Eghbali, N. (2010). Green chemistry: Principles and practice. Chemical Society Reviews, 39(1), 301–312. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20023854
Saratale, R. G., Karuppusamy, I., Saratale, G. D., et al. (2018). A comprehensive review on green nanomaterials using biological systems: Recent perception and their future applications. Colloids and Surfaces B: Biointerfaces, 170, 20–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29860217
de la Guardia, M. (2014). The challenges of green nanotechnology. Bioimpacts, 4(1), 1–2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24790892
Medina Cruz, D., Mi, G., & Webster, T. J. (2018). Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. Journal of Biomedical Materials Research Part A, 106(5), 1400–1412. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29356322
Thivaharan, V., Ramesh, V., & Raja, S. (2018). Green synthesis of silver nanoparticles for biomedical and environmental applications. In Green Metals and Nanoparticles (pp. 287–439). John Wiley & Sons, Inc.
Das, M., & Chatterjee, S. (2019). Green synthesis of metal/metal oxide nanoparticles toward biomedical applications: Boon or bane. In Green Synthesis, Characterization, and Applications of Nanoparticles (pp. 265–301). Available from: https://www.sciencedirect.com/science/article/pii/B9780081025796000113
Lomelí-Marroquín, D., Medina Cruz, D., Nieto-Argüello, A., et al. (2019). Starch-mediated synthesis of mono- and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents. International Journal of Nanomedicine, 14, 2171–2190. Available from: https://www.dovepress.com/starch-mediated-synthesis-of-mono–and-bimetallic-silver-gold-nanoparti-peer-reviewed-article-IJN
Liu, Y., Deng, F., Zhang, L., et al. (2016). Sustained dual release of placental growth factor-2 and bone morphogenic protein-2 from heparin-based nanocomplexes for direct osteogenesis. International Journal of Nanomedicine, 11, 1147. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27042064
Kim, S. E., Jeon, O., Lee, J. B., et al. (2008). Enhancement of ectopic bone formation by bone morphogenetic protein-2 delivery using heparin-conjugated PLGA nanoparticles with transplantation of bone marrow-derived mesenchymal stem cells. Journal of Biomedical Science, 15(5), 771–777. Available from: http://www.springerlink.com/index/10.1007/s11373-008-9277-4
Lee, B.-S., Lee, C.-C., Wang, Y.-P., et al. (2016). Controlled-release of tetracycline and lovastatin by poly(D,L-lactide-co-glycolide acid)-chitosan nanoparticles enhances periodontal regeneration in dogs. International Journal of Nanomedicine, 11, 285–297. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26848264
Valente, J. F. A., Gaspar, V. M., Antunes, B. P., et al. (2013). Microencapsulated chitosan–dextran sulfate nanoparticles for controlled delivery of bioactive molecules and cells in bone regeneration. Polymer, 54(1), 5–15. Available from: https://www.sciencedirect.com/science/article/pii/S0032386112008889
Gaur, S., Wen, Y., Song, J. H., et al. (2015). Chitosan nanoparticle-mediated delivery of miRNA-34a decreases prostate tumor growth in the bone and its expression induces non-canonical autophagy. Oncotarget, 6(40), 29161–29177. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26313360
Lim, T. Y., Wang, W., Shi, Z., et al. (2009). Human bone marrow-derived mesenchymal stem cells and osteoblast differentiation on titanium with surface-grafted chitosan and immobilized bone morphogenic protein-2. Journal of Materials Science: Materials in Medicine, 20(1), 1–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18651113
Shi, Z., Neoh, K. G., Kang, E. T., et al. (2009). Surface functionalization of titanium with carboxymethyl chitosan and immobilized bone morphogenic protein-2 for enhanced osseointegration. Biomacromolecules, 10(6), 1603–1611. Available from: https://pubs.acs.org/doi/10.1021/bm900203w
Fujioka-Kobayashi, M., Ota, M. S., Shimoda, A., et al. (2012). Cholesteryl group-and acryloyl group-bearing pullulan nanogel to deliver BMP2 and FGF18 for bone tissue engineering. Biomaterials, 33(29), 7613–7620. Available from: https://www.sciencedirect.com/science/article/pii/S0142961212007259
Dyondi, D., Webster, T. J., & Banerjee, R. (2013). A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration. International Journal of Nanomedicine, 8, 47–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23293519
Harris, L. G., & Richards, R. G. (2004). Staphylococcus aureus adhesion to different treated titanium surfaces. Journal of Materials Science: Materials in Medicine, 15(3), 311–314. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15332591
Foster, T. J. (2004). The Staphylococcus aureus “superbug”. Journal of Clinical Investigation, 114(12), 1693–1696. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15599392
Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science, 37(1), 106–126. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22125349
Gonzalez-Fernandez, T., Tierney, E. G., Cunniffe, G. M., et al. (2016). Gene delivery of TGF-β3 and BMP2 in an MSC-laden alginate hydrogel for articular cartilage and endochondral bone tissue engineering. Tissue Engineering Part A, 22(5–6), 776–787. Available from: https://www.liebertpub.com/doi/10.1089/ten.tea.2015.0576
Nishida, A., Yamada, M., Kanazawa, T., et al. (2011). Sustained-release of protein from biodegradable sericin film, gel and sponge. International Journal of Pharmaceutics, 407(1–2), 44–52. Available from: https://www.sciencedirect.com/science/article/pii/S0378517311000202
Nishida, A., Naganuma, T., Kanazawa, T., et al. (2011). The characterization of protein release from sericin-based materials. International Journal of Pharmaceutics, 407(1–2), 29–34. Available from: https://www.sciencedirect.com/science/article/pii/S0378517311000196
Szymańska, M., & Jędrzejczyk, J. (2015). Chitosan-based nanoparticles for protein delivery: A review. Pharmaceuticals, 8(3), 173–200. Available from: http://www.mdpi.com/1424-8247/8/3/173
Kreuter, J., & Schmidt, H. (1999). Nanoparticles as carriers for oral drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 47(1), 1–13. Available from: https://www.sciencedirect.com/science/article/pii/S0939641199000139
Medina-Cruz, D., Mostafavi, E., Vernet-Crua, A., Cheng, J., Shah, V., Cholula-Diaz, J. L., ... & Webster, T. J. (2020). Green nanotechnology-based drug delivery systems for osteogenic disorders. Expert Opinion on Drug Delivery, 17(3), 341-356.
Published
How to Cite
Issue
Section
Copyright (c) 2020 International journal of health sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.








