Advanced nano-drug delivery systems utilizing natural product-based innovations

https://doi.org/10.53730/ijhs.v8nS1.15042

Authors

  • Nasser Ali Alhabib KSA, National Guard Health Affairs
  • Soliman Mohammed Alehaidib KSA, National Guard Health Affairs
  • Omar Obaid Alharbi KSA, National Guard Health Affairs
  • Mariam Adnan Alkhadrawi KSA, National Guard Health Affairs

Keywords:

Nano-drug delivery, natural products, targeting warheads, self-assembly, drug solubility, therapeutic efficacy

Abstract

Background: Natural products have historically played a crucial role in human health, spanning from early uses to modern medicine. Despite their extensive pharmacological potential, clinical applications are often limited by issues such as poor solubility and rapid metabolism. Aim: To explore the use of advanced nano-drug delivery systems to enhance the efficacy of natural products by overcoming their limitations and improving therapeutic outcomes. Methods: This review examines various nano-drug delivery systems that integrate natural products. It discusses advancements in nano-carriers, including liposomes, micelles, and self-assembled structures, focusing on their ability to improve drug solubility, stability, and targeted delivery. Results: Significant progress has been made in developing nano-carriers for natural products, including terpenoids, flavonoids, polyphenols, and alkaloids. Innovations such as targeting warheads and self-assembled systems have shown improved drug delivery and therapeutic efficacy in preclinical studies. Conclusion: Nano-drug delivery systems utilizing natural products offer promising solutions to overcome traditional limitations, enhancing drug bioavailability and targeted delivery. This advancement holds potential for revolutionizing the treatment of complex diseases and improving clinical outcomes.

Downloads

Download data is not yet available.

References

Khan IA, Smillie T. Implementing a “Quality by Design” Approach to Assure the Safety and Integrity of Botanical Dietary Supplements. J Nat Prod. 2012;75(9):1665–1673. doi:10.1021/np300434j

Mehta P, Shah R, Lohidasan S, Mahadik KR. Pharmacokinetic profile of phytoconstituent(s) isolated from medicinal plants-A comprehensive review. J Tradit Complement Med. 2015;5(4):207–227. doi:10.1016/j.jtcme.2014.11.041

Rodrigues T, Reker D, Schneider P, Schneider G. Counting on natural products for drug design. Nat Chem. 2016;8(6):531–541. doi:10.1038/nchem.2479

Vanti G. Recent strategies in nanodelivery systems for natural products: a review. Environ Chem Lett. 2021;19(6):4311–4326. doi:10.1007/s10311-021-01276-x

Beutler JA. Natural Products as a Foundation for Drug Discovery. Curr Protoc Pharmacol. 2009;46:9.11.1–9.11.21. doi:10.1002/0471141755.ph0911s46

Watkins R, Wu L, Zhang C, Davis RM, Xu B. Natural product-based nanomedicine: recent advances and issues. Int J Nanomed. 2015;10:6055–6074. doi:10.2147/IJN.S92162

Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):71. doi:10.1186/s12951-018-0392-8

Martinho N, Damgé C, Reis CP. Recent Advances in Drug Delivery Systems. J Biomater Nanobiotechnol. 2011;02(05):510–526. doi:10.4236/jbnb.2011.225062

Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomed. 2017;12:2957–2978. doi:10.2147/IJN.S127683

Bonifácio BV, Silva PB, Ramos MADS, Negri KMS, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomed. 2014;9:1–15. doi:10.2147/IJN.S52634

Liu Z, Tabakman S, Welsher K, Dai H. Carbon Nanotubes in Biology and Medicine: in vitro and in vivo Detection, Imaging and Drug Delivery. Nano Res. 2009;2(2):85–120. doi:10.1007/s12274-009-9009-8

Razzacki SZ, Thwar PK, Yang M, Ugaz VM, Burns MA. Integrated microsystems for controlled drug delivery. Adv Drug Deliv Rev. 2004;56(2):185–198. doi:10.1016/j.addr.2003.08.012

Lam PL, Wong WY, Bian Z, Chui CH, Gambari R. Recent advances in green nanoparticulate systems for drug delivery: efficient delivery and safety concern. Nanomed. 2017;12(4):357–385. doi:10.2217/nnm-2016-0305

Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A. Nanoparticles: alternatives Against Drug-Resistant Pathogenic Microbes. Mol. 2016;21(7):836.

Saka R, Chella N. Nanotechnology for delivery of natural therapeutic substances: a review. Environ Chem Lett. 2021;19(2):1097–1106. doi:10.1007/s10311-020-01103-9

Jain H, Chella N. Methods to improve the solubility of therapeutical natural products: a review. Environ Chem Lett. 2021;19(1):111–121. doi:10.1007/s10311-020-01082-x

Paroha S, Dewangan RP, Dubey RD, Sahoo PK. Conventional and nanomaterial-based techniques to increase the bioavailability of therapeutic natural products: a review. Environ Chem Lett. 2020;18(6):1767–1778. doi:10.1007/s10311-020-01038-1

Ita KB. Prodrugs for transdermal drug delivery – trends and challenges. J Drug Target. 2016;24(8):671–678. doi:10.3109/1061186X.2016.1154562

Fang JY, Leu YL. Prodrug strategy for enhancing drug delivery via skin. Curr Drug Discov Technol. 2006;3(3):211–224. doi:10.2174/157016306780136772

Shi X, Sun K, Baker JR. Spontaneous Formation of Functionalized Dendrimer-Stabilized Gold Nanoparticles. J Phys Chem C Nanomater Interfaces. 2009;112(22):8251–8258. doi:10.1021/jp801293a

Park SH, Oh SG, Mun JY, Han SS. Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities. Colloids Surf B Biointerfaces. 2006;48(2):112–118. doi:10.1016/j.colsurfb.2006.01.006

Qiao L, Han M, Gao S, et al. Research progress on nanotechnology for delivery of active ingredients from traditional Chinese medicines. J Mater Chem B. 2020;8(30):6333–6351. doi:10.1039/D0TB01260B

Ashley EA. Towards precision medicine. Nat Rev Genet. 2016;17(9):507–522. doi:10.1038/nrg.2016.86

Muro S. Challenges in design and characterization of ligand-targeted drug delivery systems. J Control Release off J Control Release Soc. 2012;164(2):125–137. doi:10.1016/j.jconrel.2012.05.052

Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov. 2015;14(3):203–219. doi:10.1038/nrd4519

Péczka N, Orgován Z, Ábrányi-Balogh P, Keserű GM. Electrophilic warheads in covalent drug discovery: an overview. Expert Opin Drug Discov. 2022;17(4):413–422. doi:10.1080/17460441.2022.2034783

Srinivasarao M, Low PS. Ligand-Targeted Drug Delivery. Chem Rev. 2017;117(19):12133–12164. doi:10.1021/acs.chemrev.7b00013

Li Y, Chen M, Yao B, et al. Transferrin receptor-targeted redox/pH-sensitive podophyllotoxin prodrug micelles for multidrug-resistant breast cancer therapy. J Mater Chem B. 2019;7(38):5814–5824. doi:10.1039/C9TB00651F

Van Heertum RL, Scarimbolo R, Ford R, Berdougo E, O’Neal M. Companion diagnostics and molecular imaging-enhanced approaches for oncology clinical trials. Drug Des Devel Ther. 2015;9:5215–5223. doi:10.2147/DDDT.S87561

Maurer AH, Elsinga P, Fanti S, Nguyen B, Oyen WJG, Weber WA. Imaging the folate receptor on cancer cells with 99mTc-etarfolatide: properties, clinical use, and future potential of folate receptor imaging. J Nucl Med off Publ Soc Nucl Med. 2014;55(5):701–704.

Farkas R, Siwowska K, Ametamey SM, Schibli R, van der Meulen NP, Müller C. 64Cu- and 68Ga-Based PET Imaging of Folate Receptor-Positive Tumors: development and Evaluation of an Albumin-Binding NODAGA−Folate. Mol Pharm. 2016;13(6):1979–1987. doi:10.1021/acs.molpharmaceut.6b00143

Fani M, Tamma ML, Nicolas GP, et al. In Vivo Imaging of Folate Receptor Positive Tumor Xenografts Using Novel 68Ga-NODAGA-Folate Conjugates. Mol Pharm. 2012;9(5):1136–1145. doi:10.1021/mp200418f

Müller C, Schibli R. Folic Acid Conjugates for Nuclear Imaging of Folate Receptor–Positive Cancer. J Nucl Med off Publ Soc Nucl Med. 2011;52(1):1–4.

Jin SE, Jin HE, Hong SS. Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics. BioMed Res Int. 2014;2014:814208. doi:10.1155/2014/814208

Scaranti M, Cojocaru E, Banerjee S, Banerji U. Exploiting the folate receptor α in oncology. Nat Rev Clin Oncol. 2020;17(6):349–359. doi:10.1038/s41571-020-0339-5

Li-chao SUN, Shu-ying LI, Feng-zhong W, Feng-jiao XIN. Research Progresses in the Synthetic Biology of Terpenoids. Biotechnol Bull. 2017;33(1):64.

Lage H, Duarte N, Coburger C, Hilgeroth A, Ferreira MJU. Antitumor activity of terpenoids against classical and atypical multidrug resistant cancer cells. Phytomedicine. 2010;17(6):441–448. doi:10.1016/j.phymed.2009.07.009

Ge J, Liu Z, Zhong Z, et al. Natural terpenoids with anti-inflammatory activities: potential leads for anti-inflammatory drug discovery. Bioorg Chem. 2022;124:105817. doi:10.1016/j.bioorg.2022.105817

Yamaguchi T. Antibacterial effect of the combination of terpenoids. Arch Microbiol. 2022;204(8):520. doi:10.1007/s00203-022-03142-y

Lin LT, Chung CY, Hsu WC, et al. Saikosaponin b2 is a Naturally Occurring Terpenoid That Efficiently Inhibits Hepatitis C Virus Entry. J Hepatol. 2015;62(3):541–548. doi:10.1016/j.jhep.2014.10.040

Abdul Ghani MA, Ugusman A, Latip J, Zainalabidin S. Role of Terpenophenolics in Modulating Inflammation and Apoptosis in Cardiovascular Diseases: a Review. Int J Mol Sci. 2023;24(6):5339. doi:10.3390/ijms24065339

Gao J, Zhang Y, Liu X, Wu X, Huang L, Gao W. Triptolide: pharmacological spectrum, biosynthesis, chemical synthesis and derivatives. Theranostics. 2021;11(15):7199–7221. doi:10.7150/thno.57745

Xu H, Liu B. Triptolide-targeted delivery methods. Eur J Med Chem. 2019;164:342–351. doi:10.1016/j.ejmech.2018.12.058

Zhang YQ, Shen Y, Liao MM, et al. Galactosylated chitosan triptolide nanoparticles for overcoming hepatocellular carcinoma: enhanced therapeutic efficacy, low toxicity, and validated network regulatory mechanisms. Nanomedicine. 2019;15(1):86–97.

Huang C, Zeng T, Li J, et al. Folate Receptor-Mediated Renal-Targeting Nanoplatform for the Specific Delivery of Triptolide to Treat Renal Ischemia/Reperfusion Injury. ACS Biomater Sci Eng. 2019;5(6):2877–2886. doi:10.1021/acsbiomaterials.9b00119

Qian T, Cai Z, Wong RNS, Mak NK, Jiang ZH. In vivo rat metabolism and pharmacokinetic studies of ginsenoside Rg3. J Chromatogr B. 2005;816(1):223–232. doi:10.1016/j.jchromb.2004.11.036

Xu QF, Fang XL, Chen DF. Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats. J Ethnopharmacol. 2003;84(2):187–192. doi:10.1016/S0378-8741(02)00317-3

Kim H, Lee JH, Kim JE, et al. Micro-/nano-sized delivery systems of ginsenosides for improved systemic bioavailability. J Ginseng Res. 2018;42(3):361–369. doi:10.1016/j.jgr.2017.12.003

Zhang J, Jiang Y, Li Y, et al. Micelles modified with a chitosan-derived homing peptide for targeted intracellular delivery of ginsenoside compound K to liver cancer cells. Carbohydr Polym. 2020;230:115576. doi:10.1016/j.carbpol.2019.115576

Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001;126(2):485–493. doi:10.1104/pp.126.2.485

Selvakumar P, Badgeley A, Murphy P, et al. Flavonoids and Other Polyphenols Act as Epigenetic Modifiers in Breast Cancer. Nutrients. 2020;12(3):761. doi:10.3390/nu12030761

Fernandes I, Pérez-Gregorio R, Soares S, Mateus N, De Freitas V. Wine Flavonoids in Health and Disease Prevention. Mol. 2017;22(2):292.

Amawi H, Ashby CR, Tiwari AK. Cancer chemoprevention through dietary flavonoids: what’s limiting? Chin J Cancer. 2017;36(1):50. doi:10.1186/s40880-017-0217-4

Gao S, Hu M. Bioavailability challenges associated with development of anti-cancer phenolics. Mini Rev Med Chem. 2010;10(6):550–567. doi:10.2174/138955710791384081

Khan H, Ullah H, Martorell M, et al. Flavonoids nanoparticles in cancer: treatment, prevention and clinical prospects. Semin Cancer Biol. 2021;69:200–211. doi:10.1016/j.semcancer.2019.07.023

Aiello P, Consalvi S, Poce G, et al. Dietary flavonoids: nano delivery and nanoparticles for cancer therapy. Semin Cancer Biol. 2021;69:150–165. doi:10.1016/j.semcancer.2019.08.029

Zhou Z, Ma J. Gambogic acid suppresses colon cancer cell activity in vitro. Exp Ther Med. 2019;18(4):2917–2923. doi:10.3892/etm.2019.7912

Lin D, Lin X, He T, Xie G. Gambogic Acid Inhibits the Progression of Gastric Cancer via circRNA_ASAP2/miR-33a-5p/CDK7 Axis. Cancer Manag Res. 2020;12:9221–9233. doi:10.2147/CMAR.S269768

Wang H, Zhao Z, Lei S, et al. Gambogic acid induces autophagy and combines synergistically with chloroquine to suppress pancreatic cancer by increasing the accumulation of reactive oxygen species. Cancer Cell Int. 2019;19:7. doi:10.1186/s12935-018-0705-x

Wang Y, Liang X, Tong R, et al. Gambogic Acid-Loaded Polymeric Micelles for Improved Therapeutic Effect in Breast Cancer. J Biomed Nanotechnol. 2018;14(10):1695–1704. doi:10.1166/jbn.2018.2626

Li M, Su F, Zhu M, et al. Research Progress in the Field of Gambogic Acid and Its Derivatives as Antineoplastic Drugs. Mol. 2022;27(9):2937.

Wang X, Chen W. Gambogic acid is a novel anti-cancer agent that inhibits cell proliferation, angiogenesis and metastasis. Anticancer Agents Med Chem. 2012;12(8):994–1000. doi:10.2174/187152012802650066

Xu W, Wang H, Dong L, et al. Hyaluronic acid-decorated redox-sensitive chitosan micelles for tumor-specific intracellular delivery of gambogic acid. Int J Nanomed. 2019;14:4649–4666. doi:10.2147/IJN.S201110

Peng Y, Zhao FZ, Guo CS, et al. Effects and Mechanism of Baicalin on Apoptosis of Cervical Cancer HeLa Cells In-vitro. Iran J Pharm Res IJPR. 2015;14(1):251–261.

Mei ZQ, Wang S, Zhang H, et al. The combination of baicalin and baicalein enhances apoptosis via the ERK/p38 MAPK pathway in human breast cancer cells. Acta Pharmacol Sin. 2009;30(12):1648–1658. doi:10.1038/aps.2009.166

Gao C, Zhou Y, Li H, et al. Antitumor effects of baicalin on ovarian cancer cells through induction of cell apoptosis and inhibition of cell migration in vitro. Mol Med Rep. 2017;16(6):8729–8734. doi:10.3892/mmr.2017.7757

Meng F, Liu F, Lan M, et al. Preparation and evaluation of folate-modified albumin baicalin-loaded nanoparticles for the targeted treatment of breast cancer. J Drug Deliv Sci Technol. 2021;65:102603. doi:10.1016/j.jddst.2021.102603

Li X, Li S, Ma C, Li T, Yang L. Preparation of baicalin-loaded ligand-modified nanoparticles for nose-to-brain delivery for neuroprotection in cerebral ischemia. Drug Deliv. 2022;29(1):1282–1298. doi:10.1080/10717544.2022.2064564

Zhang Z, Qiu C, Li X, et al. Advances in research on interactions between polyphenols and biology-based nano-delivery systems and their applications in improving the bioavailability of polyphenols. Trends Food Sci Technol. 2021;116:492–500. doi:10.1016/j.tifs.2021.08.009

Kostić AŽ, Milinčić DD, Gašić UM, et al. Polyphenolic profile and antioxidant properties of bee-collected pollen from sunflower (Helianthus annuus L.) plant. LWT. 2019;112:108244.

Scalbert A, Johnson IT, Saltmarsh M. Polyphenols: antioxidants and beyond. Am J Clin Nutr. 2005;81(1):215S–217S. doi:10.1093/ajcn/81.1.215S

Davatgaran-Taghipour Y, Masoomzadeh S, Farzaei MH, et al. Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective. Int J Nanomed. 2017;12:2689–2702. doi:10.2147/IJN.S131973

Ignat I, Radu DG, Volf I, Pag AI, Popa VI. Antioxidant and antibacterial activities of some natural polyphenol. Cellulose Chem Technol. 2013;47(5–6):387–399.

Yahfoufi N, Alsadi N, Jambi M, Matar C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients. 2018;10(11):1618. doi:10.3390/nu10111618

Zhao C, Wan X, Zhou S, Cao H. Natural Polyphenols: a Potential Therapeutic Approach to Hypoglycemia. eFood. 2020;1(2):107–118. doi:10.2991/efood.k.200302.001

Kumar Vivekanandhan D, Ranjan Prasad Verma P, Kumar Singh S. Emerging Technologies for Improving Bioavailability of Polyphenols. Curr Nutr Food Sci. 2016;12(1):12–22. doi:10.2174/1573401311666151015213704

Han Y, Zhou J, Hu Y, et al. Polyphenol-Based Nanoparticles for Intracellular Protein Delivery via Competing Supramolecular Interactions. ACS Nano. 2020;14(10):12972–12981. doi:10.1021/acsnano.0c04197

Neethirajan S, Jayas DS. Nanotechnology for the Food and Bioprocessing Industries. Food Bioprocess Technol. 2011;4(1):39–47. doi:10.1007/s11947-010-0328-2

Gowd V, Kanika JC, et al. Resveratrol and resveratrol nano-delivery systems in the treatment of inflammatory bowel disease. J Nutr Biochem. 2022;109:109101. doi:10.1016/j.jnutbio.2022.109101

Liang M, Guo M, Saw PE, Yao Y. Fully Natural Lecithin Encapsulated Nano-Resveratrol for Anti-Cancer Therapy. Int J Nanomed. 2022;17:2069–2078. doi:10.2147/IJN.S362418

Jhaveri A, Deshpande P, Pattni B, Torchilin V. Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. J Control Release. 2018;277:89–101. doi:10.1016/j.jconrel.2018.03.006

Naksuriya O, Okonogi S. Comparison and combination effects on antioxidant power of curcumin with gallic acid, ascorbic acid, and xanthone. Drug Discov Ther. 2015;9(2):136–141. doi:10.5582/ddt.2015.01013

Vallianou NG, Evangelopoulos A, Schizas N, Kazazis C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res. 2015;35(2):645–651.

Zhang Y, Xia Q, Li Y, et al. CD44 Assists the Topical Anti-Psoriatic Efficacy of Curcumin-Loaded Hyaluronan-Modified Ethosomes: a New Strategy for Clustering Drug in Inflammatory Skin. Theranostics. 2019;9(1):48. doi:10.7150/thno.29715

Yan Y, Li X, Zhang C, Lv L, Gao B, Li M. Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: a Review. Antibiot Basel Switz. 2021;10(3):318.

Qing ZX, Huang JL, Yang XY, et al. Anticancer and Reversing Multidrug Resistance Activities of Natural Isoquinoline Alkaloids and their Structure-activity Relationship. Curr Med Chem. 2018;25(38):5088–5114. doi:10.2174/0929867324666170920125135

Gorpenchenko TY, Grigorchuk VP, Bulgakov DV, Tchernoded GK, Bulgakov VP. Tempo-Spatial Pattern of Stepharine Accumulation in Stephania Glabra Morphogenic Tissues. Int J Mol Sci. 2019;20(4):808. doi:10.3390/ijms20040808

Souza CRM, Bezerra WP, Souto JT. Marine Alkaloids with Anti-Inflammatory Activity: current Knowledge and Future Perspectives. Mar Drugs. 2020;18(3):147. doi:10.3390/md18030147

Ma X, Zhou J, Zhang CX, et al. Modulation of drug-resistant membrane and apoptosis proteins of breast cancer stem cells by targeting berberine liposomes. Biomaterials. 2013;34(18):4452–4465. doi:10.1016/j.biomaterials.2013.02.066

Majidzadeh H, Araj-Khodaei M, Ghaffari M, Torbati M, Ezzati Nazhad Dolatabadi J, Hamblin MR. Nano-based delivery systems for berberine: a modern anti-cancer herbal medicine. Colloids Surf B Biointerfaces. 2020;194:111188. doi:10.1016/j.colsurfb.2020.111188

Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A. Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomedicine. 2016;12(1):81–103. doi:10.1016/j.nano.2015.08.006

Jacob J, Haponiuk JT, Thomas S, Gopi S. Biopolymer based nanomaterials in drug delivery systems: a review. Mater Today Chem. 2018;9:43–55. doi:10.1016/j.mtchem.2018.05.002

Ingle SG, Pai RV, Monpara JD, Vavia PR. Liposils: an effective strategy for stabilizing Paclitaxel loaded liposomes by surface coating with silica. Eur J Pharm Sci off J Eur Fed Pharm Sci. 2018;122:51–63.

Wang F, Porter M, Konstantopoulos A, Zhang P, Cui H. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J Control Release off J Control Release Soc. 2017;267:100–118. doi:10.1016/j.jconrel.2017.09.026

Geisler JP, Linnemeier GC, Thomas AJ, Manahan KJ. Extreme drug resistance is common after prior exposure to paclitaxel. Gynecol Oncol. 2007;106(3):538–540. doi:10.1016/j.ygyno.2007.05.002

Ganta S, Amiji M. Coadministration of Paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm. 2009;6(3):928–939. doi:10.1021/mp800240j

Li T, Yu P, Chen Y, et al. N-acetylgalactosamine-decorated nanoliposomes for targeted delivery of paclitaxel to hepatocellular carcinoma. Eur J Med Chem. 2021;222:113605. doi:10.1016/j.ejmech.2021.113605

Khoshnejad M, Parhiz H, Shuvaev VV, Dmochowski IJ, Muzykantov VR. Ferritin-based drug delivery systems: hybrid nanocarriers for vascular immunotargeting. J Control Release off J Control Release Soc. 2018;282:13–24. doi:10.1016/j.jconrel.2018.02.042

Liang M, Fan K, Zhou M, et al. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc Natl Acad Sci U S A. 2014;111(41):14900–14905. doi:10.1073/pnas.1407808111

Fan K, Jia X, Zhou M, et al. Ferritin Nanocarrier Traverses the Blood Brain Barrier and Kills Glioma. ACS Nano. 2018;12(5):4105–4115. doi:10.1021/acsnano.7b06969

Pandolfi L, Bellini M, Vanna R, et al. H-Ferritin Enriches the Curcumin Uptake and Improves the Therapeutic Efficacy in Triple Negative Breast Cancer Cells. Biomacromolecules. 2017;18(10):3318–3330. doi:10.1021/acs.biomac.7b00974

Ma Y, Li R, Dong Y, et al. tLyP-1 Peptide Functionalized Human H Chain Ferritin for Targeted Delivery of Paclitaxel. Int J Nanomed. 2021;16:789. doi:10.2147/IJN.S289005

Lv, Y., Li, W., Liao, W., Jiang, H., Liu, Y., Cao, J., ... & Feng, Y. (2024). Nano-drug delivery systems based on natural products. International Journal of Nanomedicine, 541-569.

Published

15-01-2024

How to Cite

Alhabib, N. A., Alehaidib, S. M., Alharbi, O. O., & Alkhadrawi, M. A. (2024). Advanced nano-drug delivery systems utilizing natural product-based innovations. International Journal of Health Sciences, 8(S1), 1016–1032. https://doi.org/10.53730/ijhs.v8nS1.15042

Issue

Section

Peer Review Articles

Most read articles by the same author(s)