Advances in pharmacogenomics for personalized emergency medicine
Implications for drug safety and efficacy
Keywords:
pharmacogenomics, personalized medicine, drug safety, drug efficacy, genetic variations, emergency medicineAbstract
Background: Advances in pharmacogenomics are transforming personalized emergency medicine by addressing genetic variability in drug metabolism and response. Genetic variations can significantly affect drug safety and efficacy, particularly in emergency scenarios where rapid and effective treatment is critical. Aim: This review aims to explore how pharmacogenomics can enhance personalized emergency medicine, focusing on implications for drug safety and efficacy. Methods: We reviewed recent literature on pharmacogenomics, emphasizing its impact on drug responses in various clinical contexts including chronic diseases, autoimmune disorders, cancer, infectious diseases, psychiatric and neurologic conditions, and chronic pain. The review included case studies and clinical guidelines that integrate genetic testing into drug prescribing practices. Results: Pharmacogenomic research has identified numerous genetic variations influencing drug metabolism and efficacy. For instance, variations in genes such as CFTR, TPMT, BRCA1/2, and UGT1A1 can predict drug responses and adverse reactions, leading to more tailored and effective treatments. Implementation of pharmacogenomic testing has demonstrated potential in reducing adverse drug reactions and improving therapeutic outcomes across several conditions, including cystic fibrosis, cancer, and chronic pain. Conclusion: Incorporating pharmacogenomic data into emergency medicine practice offers significant benefits by personalizing treatment plans and minimizing adverse effects.
Downloads
References
Sharifi M, Rakhit RD, Humphries SE, Nair D. Cardiovascular risk stratification in familial hypercholesterolaemia. Heart. 2016;102(13):1003–8. DOI: https://doi.org/10.1136/heartjnl-2015-308845
Soutar AK, Naoumova RP. Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat Clin Pract Cardiovasc Med. 2007;4(4):214–25. DOI: https://doi.org/10.1038/ncpcardio0836
Wiegman A, Gidding SS, Watts GF, Chapman MJ, Ginsberg HN, Cuchel M, et al. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing
Elborn JS. Cystic fibrosis. Lancet. 2016;388(10059):2519–31. DOI: https://doi.org/10.1016/S0140-6736(16)00576-6
Cahill TJ, Ashrafian H, Watkins H. Genetic cardiomyopathies causing heart failure. Circ Res. 2013;113(6):660–75. DOI: https://doi.org/10.1161/CIRCRESAHA.113.300282
Li J. Inherited neuropathies. Semin Neurol. 2012;32(3):204–14. DOI: https://doi.org/10.1055/s-0032-1329198
Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266(5182):66–71. DOI: https://doi.org/10.1126/science.7545954
Cuyvers E, Sleegers K. Genetic variations underlying Alzheimer’s disease: evidence from genome-wide association studies and beyond. Lancet Neurol. 2016;15(8):857–68. DOI: https://doi.org/10.1016/S1474-4422(16)00127-7
Coleman CI, Limone B, Sobieraj DM, Lee S, Roberts MS, Kaur R, et al. Dosing frequency and medication adherence in chronic disease. J Manag Care Pharm. 2012;18(7):527–39. DOI: https://doi.org/10.18553/jmcp.2012.18.7.527
Loffler C, Drewelow E, Paschka SD, Frankenstein M, Eger J, Jatsch L, et al. Optimizing polypharmacy among elderly hospital patients with chronic diseases—study protocol of the cluster randomized controlled POLITE-RCT trial. Implement Sci. 2014;9:151. DOI: https://doi.org/10.1186/s13012-014-0151-7
Kalow W, Tang BK, Endrenyi L. Hypothesis: comparisons of inter- and intra-individual variations can substitute for twin studies in drug research. Pharmacogenetics. 1998;8(4):283–9. DOI: https://doi.org/10.1097/00008571-199808000-00001
Evans WE, McLeod HL. Pharmacogenomics—drug disposition, drug targets, and side effects. N Engl J Med. 2003;348(6):538–49. DOI: https://doi.org/10.1056/NEJMra020526
Wang L, McLeod HL, Weinshilboum RM. Genomics and drug response. N Engl J Med. 2011;364(12):1144–53. DOI: https://doi.org/10.1056/NEJMra1010600
Clancy JP, Johnson SG, Yee SW, McDonagh EM, Caudle KE, Klein TE, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for ivacaftor therapy in the context of CFTR genotype. Clin Pharmacol Ther. 2014;95(6):592–7. DOI: https://doi.org/10.1038/clpt.2014.54
Davies EC, Green CF, Mottram DR, Pirmohamed M. Adverse drug reactions in hospitals: a narrative review. Current Drug Safety. 2007;2(1):79–87. DOI: https://doi.org/10.2174/157488607779315507
Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA. 1998;279(15):1200–5. DOI: https://doi.org/10.1001/jama.279.15.1200
Finkelstein J, Friedman C, Hripcsak G, Cabrera M. Pharmacogenetic polymorphism as an independent risk factor for frequent hospitalizations in older adults with polypharmacy: a pilot study. Pharmgenomics Pers Med. 2016;9:107–16. DOI: https://doi.org/10.2147/PGPM.S117014
Kalow W. Familial incidence of low pseudocholinesterase level. Lancet. 1956;2:576. DOI: https://doi.org/10.1016/S0140-6736(56)92065-7
Kalow W. Human pharmacogenomics: the development of a science. Hum Genomics. 2004;1(5):375–80. DOI: https://doi.org/10.1186/1479-7364-1-5-375
Weinshilboum R. Inheritance and drug response. N Engl J Med. 2003;348(6):529–37. DOI: https://doi.org/10.1056/NEJMra020021
Hicks JK, Swen JJ, Gaedigk A. Challenges in CYP2D6 phenotype assignment from genotype data: a critical assessment and call for standardization. Curr Drug Metab. 2014;15(2):218–32. DOI: https://doi.org/10.2174/1389200215666140202215316
Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L, et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther. 2006;79(1):103–13. DOI: https://doi.org/10.1016/j.clpt.2005.10.002
Bosma PJ, Chowdhury JR, Bakker C, Gantla S, de Boer A, Oostra BA, et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med. 1995;333(18):1171–5. DOI: https://doi.org/10.1056/NEJM199511023331802
1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–73. DOI: https://doi.org/10.1038/nature09534
Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F, et al. Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467(7311):52–8. DOI: https://doi.org/10.1038/nature09298
He Y, Hoskins JM, McLeod HL. Copy number variants in pharmacogenetic genes. Trends Mol Med. 2011;17(5):244–51. DOI: https://doi.org/10.1016/j.molmed.2011.01.007
Gaedigk A. Complexities of CYP2D6 gene analysis and interpretation. Int Rev Psychiatry. 2013;25(5):534–53. DOI: https://doi.org/10.3109/09540261.2013.825581
Caudle KE, Dunnenberger HM, Freimuth RR, Peterson JF, Burlison JD, Whirl-Carrillo M, et al. Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet Med. 2016; DOI: https://doi.org/10.1038/gim.2016.87
Cleare A, Pariante CM, Young AH, Anderson IM, Christmas D, Cowen PJ, et al. Evidence-based guidelines for treating depressive disorders with antidepressants: a revision of the 2008 British Association for Psychopharmacology guidelines. J Psychopharmacol. 2015;29(5):459–525. DOI: https://doi.org/10.1177/0269881115581093
Qaseem A, Barry MJ, Kansagara D. Clinical Guidelines Committee of the American College of P. Nonpharmacologic versus pharmacologic treatment of adult patients with major depressive disorder: a clinical practice guideline from the american college of physicians. Ann Intern Med. 2016;164(5):350–9. DOI: https://doi.org/10.7326/M15-2570
Relling MV, Klein TE. CPIC: clinical pharmacogenetics implementation consortium of the pharmacogenomics research network. Clin Pharmacol Ther. 2011;89(3):464–7. DOI: https://doi.org/10.1038/clpt.2010.279
Relling MV, Evans WE. Pharmacogenomics in the clinic. Nature. 2015;526(7573):343–50. DOI: https://doi.org/10.1038/nature15817
Dunnenberger HM, Crews KR, Hoffman JM, Caudle KE, Broeckel U, Howard SC, et al. Preemptive clinical pharmacogenetics implementation: current programs in five US medical centers. Annu Rev Pharmacol Toxicol. 2015;55:89–106. DOI: https://doi.org/10.1146/annurev-pharmtox-010814-124835
Relling MV, Hancock ML, Rivera GK, Sandlund JT, Ribeiro RC, Krynetski EY, et al. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst. 1999;91(23):2001–8. DOI: https://doi.org/10.1093/jnci/91.23.2001
McLeod HL, Siva C. The thiopurine S-methyltransferase gene locus—implications for clinical pharmacogenomics. Pharmacogenomics. 2002;3(1):89–98. DOI: https://doi.org/10.1517/14622416.3.1.89
Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH, Yee SW, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther. 2011;89(3):387–91. DOI: https://doi.org/10.1038/clpt.2010.320
Relling MV, Schwab M, Whirl-Carrillo M, Suarez-Kurtz G, Pui CH, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin Pharmacol Ther. 2019;105(5):1095–105. DOI: https://doi.org/10.1002/cpt.1304
Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123–34. DOI: https://doi.org/10.1056/NEJMoa0900212
de Bono J, Mateo J, Fizazi K, Saad F, Shore N, Sandhu S, et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med. 2020;382(22):2091–102. DOI: https://doi.org/10.1056/NEJMoa1911440
Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall MJ, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381(4):317–27. DOI: https://doi.org/10.1056/NEJMoa1903387
Westdorp H, Fennemann FL, Weren RD, Bisseling TM, Ligtenberg MJ, Figdor CG, et al. Opportunities for immunotherapy in microsatellite instable colorectal cancer. Cancer Immunol Immunother. 2016;65(10):1249–59. DOI: https://doi.org/10.1007/s00262-016-1832-7
Thorn CF, Marsh S, Carrillo MW, McLeod HL, Klein TE, Altman RB. PharmGKB summary: fluoropyrimidine pathways. Pharmacogenet Genomics. 2011;21(4):237–42. DOI: https://doi.org/10.1097/FPC.0b013e32833c6107
Caudle KE, Thorn CF, Klein TE, Swen JJ, McLeod HL, Diasio RB, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing. Clin Pharmacol Ther. 2013;94(6):640–5. DOI: https://doi.org/10.1038/clpt.2013.172
Amstutz U, Henricks LM, Offer SM, Barbarino J, Schellens JHM, Swen JJ, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin Pharmacol Ther. 2018;103(2):210–6. DOI: https://doi.org/10.1002/cpt.911
Henricks LM, Lunenburg C, de Man FM, Meulendijks D, Frederix GWJ, Kienhuis E, et al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: a prospective safety analysis. Lancet Oncol. 2018;19(11):1459–67. DOI: https://doi.org/10.1016/S1470-2045(18)30686-7
Ke EE, Wu YL. EGFR as a pharmacological target in EGFR-mutant non-small-cell lung cancer: where do we stand now? Trends Pharmacol Sci. 2016;37(11):887–903. DOI: https://doi.org/10.1016/j.tips.2016.09.003
Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81. DOI: https://doi.org/10.1038/nrc2088
Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378(2):113–25. DOI: https://doi.org/10.1056/NEJMoa1713137
Redig AJ, Janne PA. Basket trials and the evolution of clinical trial design in an era of genomic medicine. J Clin Oncol. 2015;33(9):975–7. DOI: https://doi.org/10.1200/JCO.2014.59.8433
Hunt PW. HIV and aging: emerging research issues. Curr Opin HIV AIDS. 2014;9(4):302–8. DOI: https://doi.org/10.1097/COH.0000000000000072
Samji H, Cescon A, Hogg RS, Modur SP, Althoff KN, Buchacz K, et al. Closing the gap: increases in life expectancy among treated HIV-positive individuals in the United States and Canada. PLoS One. 2013;8(12):e81355. DOI: https://doi.org/10.1371/journal.pone.0081355
Deeks SG, Lewin SR, Havlir DV. The end of AIDS: HIV infection as a chronic disease. Lancet. 2013;382(9903):1525–33. DOI: https://doi.org/10.1016/S0140-6736(13)61809-7
Escaut L, Liotier JY, Albengres E, Cheminot N, Vittecoq D. Abacavir rechallenge has to be avoided in case of hypersensitivity reaction. AIDS. 1999;13(11):1419–20. DOI: https://doi.org/10.1097/00002030-199907300-00026
Martin MA, Klein TE, Dong BJ, Pirmohamed M, Haas DW, Kroetz DL, et al. Clinical pharmacogenetics implementation consortium guidelines for HLA-B genotype and abacavir dosing. Clin Pharmacol Ther. 2012;91(4):734–8. DOI: https://doi.org/10.1038/clpt.2011.355
Hershfield MS, Callaghan JT, Tassaneeyakul W, Mushiroda T, Thorn CF, Klein TE, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for human leukocyte antigen-B genotype and allopurinol dosing. Clin Pharmacol Ther. 2013;93(2):153–8. DOI: https://doi.org/10.1038/clpt.2012.209
Martin AM, Nolan D, Gaudieri S, Almeida CA, Nolan R, James I, et al. Predisposition to abacavir hypersensitivity conferred by HLA-B*5701 and a haplotypic Hsp70-Hom variant. Proc Natl Acad Sci USA. 2004;101(12):4180–5. DOI: https://doi.org/10.1073/pnas.0307067101
Mallal S, Nolan D, Witt C, Masel G, Martin AM, Moore C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet. 2002;359(9308):727–32. DOI: https://doi.org/10.1016/S0140-6736(02)07873-X
Hetherington S, Hughes AR, Mosteller M, Shortino D, Baker KL, Spreen W, et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet. 2002;359(9312):1121–2. DOI: https://doi.org/10.1016/S0140-6736(02)08158-8
Mallal S, Phillips E, Carosi G, Molina JM, Workman C, Tomazic J, et al. HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med. 2008;358(6):568–79. DOI: https://doi.org/10.1056/NEJMoa0706135
Lennox JL, Landovitz RJ, Ribaudo HJ, Ofotokun I, Na LH, Godfrey C, et al. Efficacy and tolerability of 3 nonnucleoside reverse transcriptase inhibitor-sparing antiretroviral regimens for treatment-naive volunteers infected with HIV-1: a randomized, controlled equivalence trial. Ann Intern Med. 2014;161(7):461–71. DOI: https://doi.org/10.7326/M14-1084
Molina JM, Andrade-Villanueva J, Echevarria J, Chetchotisakd P, Corral J, David N, et al. Once-daily atazanavir/ritonavir versus twice-daily lopinavir/ritonavir, each in combination with tenofovir and emtricitabine, for management of antiretroviral-naive HIV-1-infected patients: 48 week efficacy and safety results of the CASTLE study. Lancet. 2008;372(9639):646–55. DOI: https://doi.org/10.1016/S0140-6736(08)61081-8
Bosma P, Chowdhury JR, Jansen PH. Genetic inheritance of Gilbert’s syndrome. Lancet. 1995;346(8970):314–5. DOI: https://doi.org/10.1016/S0140-6736(95)92203-2
Lubomirov R, Colombo S, di Iulio J, Ledergerber B, Martinez R, Cavassini M, et al. Association of pharmacogenetic markers with premature discontinuation of first-line anti-HIV therapy: an observational cohort study. J Infect Dis. 2011;203(2):246–57. DOI: https://doi.org/10.1093/infdis/jiq043
Ribaudo HJ, Daar ES, Tierney C, Morse GD, Mollan K, Sax PE, et al. Impact of UGT1A1 Gilbert variant on discontinuation of ritonavir-boosted atazanavir in AIDS Clinical Trials Group Study A5202. J Infect Dis. 2013;207(3):420–5. DOI: https://doi.org/10.1093/infdis/jis690
Vardhanabhuti S, Ribaudo HJ, Landovitz RJ, Ofotokun I, Lennox JL, Currier JS, et al. Screening for UGT1A1 genotype in study A5257 would have markedly reduced premature discontinuation of atazanavir for hyperbilirubinemia. Open Forum Infect Dis. 2015;2(3):ofv085. DOI: https://doi.org/10.1093/ofid/ofv085
Gammal RS, Court MH, Haidar CE, Iwuchukwu OF, Gaur AH, Alvarellos M, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for UGT1A1 and atazanavir prescribing. Clin Pharmacol Ther. 2016;99(4):363–9. DOI: https://doi.org/10.1002/cpt.269
Bandiera S, Billie Bian C, Hoshida Y, Baumert TF, Zeisel MB. Chronic hepatitis C virus infection and pathogenesis of hepatocellular carcinoma. Curr Opin Virol. 2016;20:99–105. DOI: https://doi.org/10.1016/j.coviro.2016.09.010
Easterbrook PJ, Group WHOGD. Who to test and how to test for chronic hepatitis C infection—2016 WHO testing guidance for low- and middle-income countries. J Hepatol. 2016;65(1 Suppl):S46–66. DOI: https://doi.org/10.1016/j.jhep.2016.08.002
van der Meer AJ, Veldt BJ, Feld JJ, Wedemeyer H, Dufour JF, Lammert F, et al. Association between sustained virological response and all-cause mortality among patients with chronic hepatitis C and advanced hepatic fibrosis. JAMA. 2012;308(24):2584–93. DOI: https://doi.org/10.1001/jama.2012.144878
Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet. 2001;358(9286):958–65. DOI: https://doi.org/10.1016/S0140-6736(01)06102-5
Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, Goncales FL Jr, et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med. 2002;347(13):975–82. DOI: https://doi.org/10.1056/NEJMoa020047
Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature. 2009;461(7262):399–401. DOI: https://doi.org/10.1038/nature08309
Muir AJ, Gong L, Johnson SG, Lee MT, Williams MS, Klein TE, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for IFNL3 (IL28B) genotype and PEG interferon-alpha-based regimens. Clin Pharmacol Ther. 2014;95(2):141–6. DOI: https://doi.org/10.1038/clpt.2013.203
Pilmis B, Puel A, Lortholary O, Lanternier F. New clinical phenotypes of fungal infections in special hosts. Clin Microbiol Infect. 2016;22(8):681–7. DOI: https://doi.org/10.1016/j.cmi.2016.05.016
Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA, et al. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis. 2008;46(3):327–60. DOI: https://doi.org/10.1086/525258
Owusu Obeng A, Egelund EF, Alsultan A, Peloquin CA, Johnson JA. CYP2C19 polymorphisms and therapeutic drug monitoring of voriconazole: are we ready for clinical implementation of pharmacogenomics? Pharmacotherapy. 2014;34(7):703–18. DOI: https://doi.org/10.1002/phar.1400
Miyakis S, van Hal SJ, Ray J, Marriott D. Voriconazole concentrations and outcome of invasive fungal infections. Clin Microbiol Infect. 2010;16(7):927–33. DOI: https://doi.org/10.1111/j.1469-0691.2009.02990.x
Mason NT, Bell GC, Quilitz RE, Greene JN, McLeod HL. Budget impact analysis of CYP2C19-guided voriconazole prophylaxis in AML. J Antimicrob Chemother. 2015;70(11):3124–6. DOI: https://doi.org/10.1093/jac/dkv224
Hicks JK, Gonzalez BE, Zembillas AS, Kusick K, Murthy S, Raja S, et al. Invasive Aspergillus infection requiring lobectomy in a CYP2C19 rapid metabolizer with subtherapeutic voriconazole concentrations. Pharmacogenomics. 2016;17(7):663–7. DOI: https://doi.org/10.2217/pgs-2015-0014
Hicks JK, Crews KR, Flynn P, Haidar CE, Daniels CC, Yang W, et al. Voriconazole plasma concentrations in immunocompromised pediatric patients vary by CYP2C19 diplotypes. Pharmacogenomics. 2014;15(8):1065–78. DOI: https://doi.org/10.2217/pgs.14.53
Moriyama B, Obeng AO, Barbarino J, Penzak SR, Henning SA, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP2C19 and voriconazole therapy. Clin Pharmacol Ther. 2017;102(1):45–51. DOI: https://doi.org/10.1002/cpt.583
Hicks JK, Quilitz RE, Komrokji RS, Kubal TE, Lancet JE, Pasikhova Y, et al. Prospective CYP2C19-guided voriconazole prophylaxis in patients with neutropenic acute myeloid leukemia reduces the incidence of subtherapeutic antifungal plasma concentrations. Clin Pharmacol Ther. 2020;107(3):563–70. DOI: https://doi.org/10.1002/cpt.1641
Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA. 2003;289(23):3095–105. DOI: https://doi.org/10.1001/jama.289.23.3095
Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442. DOI: https://doi.org/10.1371/journal.pmed.0030442
Kessler RC. The costs of depression. Psychiatr Clin North Am. 2012;35(1):1–14. DOI: https://doi.org/10.1016/j.psc.2011.11.005
Barak Y, Swartz M, Baruch Y. Venlafaxine or a second SSRI: switching after treatment failure with an SSRI among depressed inpatients: a retrospective analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(7):1744–7. DOI: https://doi.org/10.1016/j.pnpbp.2011.06.007
Hampton LM, Daubresse M, Chang HY, Alexander GC, Budnitz DS. Emergency department visits by adults for psychiatric medication adverse events. JAMA Psychiatry. 2014;71(9):1006–14. DOI: https://doi.org/10.1001/jamapsychiatry.2014.436
Kennedy SH, Giacobbe P. Treatment resistant depression—advances in somatic therapies. Ann Clin Psychiatry. 2007;19(4):279–87. DOI: https://doi.org/10.1080/10401230701675222
Hicks JK, Bishop JR, Sangkuhl K, Muller DJ, Ji Y, Leckband SG, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin Pharmacol Ther. 2015;98(2):127–34. DOI: https://doi.org/10.1002/cpt.147
Hicks JK, Swen JJ, Thorn CF, Sangkuhl K, Kharasch ED, Ellingrod VL, et al. Clinical Pharmacogenetics Implementation Consortium guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants. Clin Pharmacol Ther. 2013;93(5):402–8. DOI: https://doi.org/10.1038/clpt.2013.2
Hicks JK, Sangkuhl K, Swen JJ, Ellingrod VL, Muller DJ, Shimoda K, et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther. 2017;102(1):37–44. DOI: https://doi.org/10.1002/cpt.597
Altar CA, Carhart JM, Allen JD, Hall-Flavin DK, Dechairo BM, Winner JG. Clinical validity: Combinatorial pharmacogenomics predicts antidepressant responses and healthcare utilizations better than single gene phenotypes. Pharmacogenomics J. 2015;15(5):443–51. DOI: https://doi.org/10.1038/tpj.2014.85
Hall-Flavin DK, Winner JG, Allen JD, Carhart JM, Proctor B, Snyder KA, et al. Utility of integrated pharmacogenomic testing to support the treatment of major depressive disorder in a psychiatric outpatient setting. Pharmacogenet Genomics. 2013;23(10):535–48. DOI: https://doi.org/10.1097/FPC.0b013e3283649b9a
Winner JG, Carhart JM, Altar CA, Goldfarb S, Allen JD, Lavezzari G, et al. Combinatorial pharmacogenomic guidance for psychiatric medications reduces overall pharmacy costs in a 1 year prospective evaluation. Curr Med Res Opin. 2015;31(9):1633–43. DOI: https://doi.org/10.1185/03007995.2015.1063483
Oslin DW, Lynch KG, Shih MC, Ingram EP, Wray LO, Chapman SR, et al. Effect of pharmacogenomic testing for drug-gene interactions on medication selection and remission of symptoms in major depressive disorder: the PRIME care randomized clinical trial. JAMA. 2022;328(2):151–61. DOI: https://doi.org/10.1001/jama.2022.9805
Thompson C, Steven PH, Catriona H. Psychiatrist attitudes towards pharmacogenetic testing, direct-to-consumer genetic testing, and integrating genetic counseling into psychiatric patient care. Psychiatry Res. 2015;226(1):68–72. DOI: https://doi.org/10.1016/j.psychres.2014.11.044
Walden LM, Brandl EJ, Changasi A, Sturgess JE, Soibel A, Notario JF, et al. Physicians' opinions following pharmacogenetic testing for psychotropic medication. Psychiatry Res. 2015;229(3):913–8. DOI: https://doi.org/10.1016/j.psychres.2015.07.032
de Leon J, Armstrong SC, Cozza KL. Clinical guidelines for psychiatrists for the use of pharmacogenetic testing for CYP450 2D6 and CYP450 2C19. Psychosomatics. 2006;47(1):75–85. DOI: https://doi.org/10.1176/appi.psy.47.1.75
Lohoff FW, Aquino TD, Narasimhan S, Multani PK, Etemad B, Rickels K. Serotonin receptor 2A (HTR2A) gene polymorphism predicts treatment response to venlafaxine XR in generalized anxiety disorder. Pharmacogenomics J. 2013;13(1):21–6. DOI: https://doi.org/10.1038/tpj.2011.47
Wilkie MJ, Smith G, Day RK, Matthews K, Smith D, Blackwood D, et al. Polymorphisms in the SLC6A4 and HTR2A genes influence treatment outcome following antidepressant therapy. Pharmacogenomics J. 2009;9(1):61–70. DOI: https://doi.org/10.1038/sj.tpj.6500491
de Leon J, Spina E, Diaz FJ. Clobazam therapeutic drug monitoring: a comprehensive review of the literature with proposals to improve future studies. Ther Drug Monit. 2013;35(1):30–47. DOI: https://doi.org/10.1097/FTD.0b013e31827ada88
Miranda LF, Gomes KB, Silveira JN, Pianetti GA, Byrro RM, Peles PR, et al. Predictive factors of clinical response to cholinesterase inhibitors in mild and moderate Alzheimer's disease and mixed dementia: a one-year naturalistic study. J Alzheimers Dis. 2015;45(2):609–20. DOI: https://doi.org/10.3233/JAD-142148
Mehanna R, Hunter C, Davidson A, Jimenez-Shahed J, Jankovic J. Analysis of CYP2D6 genotype and response to tetrabenazine. Mov Disord. 2013;28(2):210–5. DOI: https://doi.org/10.1002/mds.25278
Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature. 2004;428(6982):486. DOI: https://doi.org/10.1038/428486a
Yip VL, Marson AG, Jorgensen AL, Pirmohamed M, Alfirevic A. HLA genotype and carbamazepine-induced cutaneous adverse drug reactions: a systematic review. Clin Pharmacol Ther. 2012;92(6):757–65. DOI: https://doi.org/10.1038/clpt.2012.189
Chen P, Lin JJ, Lu CS, Ong CT, Hsieh PF, Yang CC, et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N Engl J Med. 2011;364(12):1126–33. DOI: https://doi.org/10.1056/NEJMoa1009717
Hardt J, Jacobsen C, Goldberg J, Nickel R, Buchwald D. Prevalence of chronic pain in a representative sample in the United States. Pain Med. 2008;9(7):803–12. DOI: https://doi.org/10.1111/j.1526-4637.2008.00425.x
Sadhasivam S, Chidambaran V. Pharmacogenomics of opioids and perioperative pain management. Pharmacogenomics. 2012;13(15):1719–40. DOI: https://doi.org/10.2217/pgs.12.152
Ross JR, Rutter D, Welsh K, Joel SP, Goller K, Wells AU, et al. Clinical response to morphine in cancer patients and genetic variation in candidate genes. Pharmacogenomics J. 2005;5(5):324–36. DOI: https://doi.org/10.1038/sj.tpj.6500327
Zubieta JK, Heitzeg MM, Smith YR, Bueller JA, Xu K, Xu Y, et al. COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science. 2003;299(5610):1240–3. DOI: https://doi.org/10.1126/science.1078546
Diatchenko L, Slade GD, Nackley AG, Bhalang K, Sigurdsson A, Belfer I, et al. Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum Mol Genet. 2005;14(1):135–43. DOI: https://doi.org/10.1093/hmg/ddi013
Kim H, Neubert JK, San Miguel A, Xu K, Krishnaraju RK, Iadarola MJ, et al. Genetic influence on variability in human acute experimental pain sensitivity associated with gender, ethnicity and psychological temperament. Pain. 2004;109(3):488–96. DOI: https://doi.org/10.1016/j.pain.2004.02.027
Rakvag TT, Ross JR, Sato H, Skorpen F, Kaasa S, Klepstad P. Genetic variation in the catechol-O-methyltransferase (COMT) gene and morphine requirements in cancer patients with pain. Mol Pain. 2008;4:64. DOI: https://doi.org/10.1186/1744-8069-4-64
Crews KR, Monte AA, Huddart R, Caudle KE, Kharasch ED, Gaedigk A, et al. Clinical pharmacogenetics implementation consortium guideline for CYP2D6, OPRM1, and COMT genotypes and select opioid therapy. Clin Pharmacol Ther. 2021;110(4):888–96. DOI: https://doi.org/10.1002/cpt.2149
Kirchheiner J, Stormer E, Meisel C, Steinbach N, Roots I, Brockmoller J. Influence of CYP2C9 genetic polymorphisms on pharmacokinetics of celecoxib and its metabolites. Pharmacogenetics. 2003;13(8):473–80. DOI: https://doi.org/10.1097/00008571-200308000-00005
Theken KN, Lee CR, Gong L, Caudle KE, Formea CM, Gaedigk A, et al. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2C9 and nonsteroidal anti-inflammatory drugs. Clin Pharmacol Ther. 2020;108(2):191–200. DOI: https://doi.org/10.1002/cpt.1830
Kelly LE, Rieder M, van den Anker J, Malkin B, Ross C, Neely MN, et al. More codeine fatalities after tonsillectomy in North American children. Pediatrics. 2012;129(5):e1343–7. DOI: https://doi.org/10.1542/peds.2011-2538
Crews KR, Gaedigk A, Dunnenberger HM, Leeder JS, Klein TE, Caudle KE, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther. 2014;95(4):376–82. DOI: https://doi.org/10.1038/clpt.2013.254
Chou WY, Yang LC, Lu HF, Ko JY, Wang CH, Lin SH, et al. Association of mu-opioid receptor gene polymorphism (A118G) with variations in morphine consumption for analgesia after total knee arthroplasty. Acta Anaesthesiol Scand. 2006;50(7):787–92. DOI: https://doi.org/10.1111/j.1399-6576.2006.01058.x
Janicki PK, Schuler G, Francis D, Bohr A, Gordin V, Jarzembowski T, et al. A genetic association study of the functional A118G polymorphism of the human mu-opioid receptor gene in patients with acute and chronic pain. Anesth Analg. 2006;103(4):1011–7. DOI: https://doi.org/10.1213/01.ane.0000231634.20341.88
Mensah GA, Brown DW. An overview of cardiovascular disease burden in the United States. Health Aff (Millwood). 2007;26(1):38–48. DOI: https://doi.org/10.1377/hlthaff.26.1.38
Materson BJ, Reda DJ, Cushman WC, Massie BM, Freis ED, Kochar MS, et al. Single-drug therapy for hypertension in men. A comparison of six antihypertensive agents with placebo. The Department of Veterans Affairs Cooperative Study Group on Antihypertensive Agents. N Engl J Med. 1993;328(13):914–21. DOI: https://doi.org/10.1056/NEJM199304013281303
Johnson JA, Gong Y, Bailey KR, Cooper-DeHoff RM, Chapman AB, Turner ST, et al. Hydrochlorothiazide and atenolol combination antihypertensive therapy: effects of drug initiation order. Clin Pharmacol Ther. 2009;86(5):533–9. DOI: https://doi.org/10.1038/clpt.2009.101
Mahmud A, Feely J. Choice of first antihypertensive: simple as ABCD? Am J Hypertens. 2007;20(8):923–7. DOI: https://doi.org/10.1016/j.amjhyper.2007.03.011
Schwartz GL, Bailey K, Chapman AB, Boerwinkle E, Turner ST. The role of plasma renin activity, age, and race in selecting effective initial drug therapy for hypertension. Am J Hypertens. 2013;26(8):957–64. DOI: https://doi.org/10.1093/ajh/hpt047
Dahlberg J, Nilsson LO, von Wowern F, Melander O. Polymorphism in NEDD4L is associated with increased salt sensitivity, reduced levels of P-renin and increased levels of Nt-proANP. PLoS One. 2007;2(5):e432. DOI: https://doi.org/10.1371/journal.pone.0000432
Dahlberg J, Sjogren M, Hedblad B, Engstrom G, Melander O. Genetic variation in NEDD4L, an epithelial sodium channel regulator, is associated with cardiovascular disease and cardiovascular death. J Hypertens. 2014;32(2):294–9. DOI: https://doi.org/10.1097/HJH.0000000000000044
Luo F, Wang Y, Wang X, Sun K, Zhou X, Hui R. A functional variant of NEDD4L is associated with hypertension, antihypertensive response, and orthostatic hypotension. Hypertension. 2009;54(4):796–801. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.109.135103
Johnson JA, Zineh I, Puckett BJ, McGorray SP, Yarandi HN, Pauly DF. Beta 1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin Pharmacol Ther. 2003;74(1):44–52. DOI: https://doi.org/10.1016/S0009-9236(03)00068-7
Liu J, Liu ZQ, Yu BN, Xu FH, Mo W, Zhou G, et al. beta1-Adrenergic receptor polymorphisms influence the response to metoprolol monotherapy in patients with essential hypertension. Clin Pharmacol Ther. 2006;80(1):23–32. DOI: https://doi.org/10.1016/j.clpt.2006.03.004
Wu D, Li G, Deng M, Song W, Huang X, Guo X, et al. Associations between ADRB1 and CYP2D6 gene polymorphisms and the response to beta-blocker therapy in hypertension. J Int Med Res. 2015;43(3):424–34. DOI: https://doi.org/10.1177/0300060514563151
Sjouke B, Kusters DM, Kindt I, Besseling J, Defesche JC, Sijbrands EJ, et al. Homozygous autosomal dominant hypercholesterolaemia in the Netherlands: prevalence, genotype-phenotype relationship, and clinical outcome. Eur Heart J. 2015;36(9):560–5. DOI: https://doi.org/10.1093/eurheartj/ehu058
Poduri A, Khullar M, Bahl A, Sehrawat BS, Sharma Y, Talwar KK. Common variants of HMGCR, CETP, APOAI, ABCB1, CYP3A4, and CYP7A1 genes as predictors of lipid-lowering response to atorvastatin therapy. DNA Cell Biol. 2010;29(10):629–37. DOI: https://doi.org/10.1089/dna.2009.1008
Akao H, Polisecki E, Kajinami K, Trompet S, Robertson M, Ford I, et al. Genetic variation at the SLCO1B1 gene locus and low density lipoprotein cholesterol lowering response to pravastatin in the elderly. Atherosclerosis. 2012;220(2):413–7. DOI: https://doi.org/10.1016/j.atherosclerosis.2011.09.028
Thompson JF, Man M, Johnson KJ, Wood LS, Lira ME, Lloyd DB, et al. An association study of 43 SNPs in 16 candidate genes with atorvastatin response. Pharmacogenomics J. 2005;5(6):352–8. DOI: https://doi.org/10.1038/sj.tpj.6500328
Chasman DI, Giulianini F, MacFadyen J, Barratt BJ, Nyberg F, Ridker PM. Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. Circ Cardiovasc Genet. 2012;5(2):257–64. DOI: https://doi.org/10.1161/CIRCGENETICS.111.961144
Group SC, Link E, Parish S, Armitage J, Bowman L, Heath S, et al. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N Engl J Med. 2008;359(8):789–99. DOI: https://doi.org/10.1056/NEJMoa0801936
Ramsey LB, Johnson SG, Caudle KE, Haidar CE, Voora D, Wilke RA, et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther. 2014;96(4):423–8. DOI: https://doi.org/10.1038/clpt.2014.125
Cooper-DeHoff RM, Niemi M, Ramsey LB, Luzum JA, Tarkiainen EK, Straka RJ, et al. The Clinical Pharmacogenetics Implementation Consortium Guideline for SLCO1B1, ABCG2, and CYP2C9 genotypes and statin-associated musculoskeletal symptoms. Clin Pharmacol Ther. 2022;111(5):1007–21. DOI: https://doi.org/10.1002/cpt.2557
Scott SA, Sangkuhl K, Stein CM, Hulot JS, Mega JL, Roden DM, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther. 2013;94(3):317–23. DOI: https://doi.org/10.1038/clpt.2013.105
Lee CR, Luzum JA, Sangkuhl K, Gammal RS, Sabatine MS, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2C19 genotype and clopidogrel therapy: 2022 update. Clin Pharmacol Ther. 2022;112:959–67. DOI: https://doi.org/10.1002/cpt.2526
Aithal GP, Day CP, Kesteven PJ, Daly AK. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet. 1999;353(9154):717–9. DOI: https://doi.org/10.1016/S0140-6736(98)04474-2
Limdi NA, McGwin G, Goldstein JA, Beasley TM, Arnett DK, Adler BK, et al. Influence of CYP2C9 and VKORC1 1173C/T genotype on the risk of hemorrhagic complications in African-American and European-American patients on warfarin. Clin Pharmacol Ther. 2008;83(2):312–21. DOI: https://doi.org/10.1038/sj.clpt.6100290
Limdi NA, Arnett DK, Goldstein JA, Beasley TM, McGwin G, Adler BK, et al. Influence of CYP2C9 and VKORC1 on warfarin dose, anticoagulation attainment and maintenance among European-Americans and African-Americans. Pharmacogenomics. 2008;9(5):511–26. DOI: https://doi.org/10.2217/14622416.9.5.511
Johnson JA, Caudle KE, Gong L, Whirl-Carrillo M, Stein CM, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for pharmacogenetics-guided warfarin dosing: 2017 update. Clin Pharmacol Ther. 2017;102(3):397–404. DOI: https://doi.org/10.1002/cpt.668
Published
How to Cite
Issue
Section
Copyright (c) 2023 International journal of health sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.