Data-driven approaches to improving emergency response times and patient outcomes

https://doi.org/10.53730/ijhs.v6nS10.15151

Authors

  • Sultan Mohammed Algfari KSA, National Guard Health Affairs
  • Abeer Saleh Alghamdi KSA, National Guard Health Affairs
  • Abdulaziz Mohammed Almuhaylib KSA, National Guard Health Affairs
  • Mohammed Abdullah Alzaher KSA, National Guard Health Affairs
  • Suhoud Saud Alotaibi KSA, National Guard Health Affairs
  • ‎‏Zaid Helal Alanazi KSA, National Guard Health Affairs
  • Mohammed Hamoud Alwaked KSA, National Guard Health Affairs
  • Fawaz Ayed Al-Sharari KSA, National Guard Health Affairs
  • Abdulaziz Ahmad Alrashidi KSA, National Guard Health Affairs
  • Bander Batti Alrasheedi KSA, National Guard Health Affairs
  • Fayez Abdullah Hussain Alsarimi KSA, National Guard Health Affairs
  • Amani Ayyadhah Alanazi KSA, National Guard Health Affairs
  • Adel Zayed Alumtairi KSA, National Guard Health Affairs

Keywords:

Data-driven disaster management, big data analytics, Geographic Information Systems, Artificial Intelligence, Internet of Things, predictive modeling

Abstract

Background: Data-driven disaster management represents a transformative shift from traditional methods, crucial amid increasing natural and man-made disasters. The escalation in climate-related threats and high-risk population densities has underscored the inadequacy of conventional disaster management strategies. This research explores the potential of big data analytics to revolutionize disaster preparedness, response coordination, and recovery efforts. Aim: This study aims to investigate the application of big data analytics in enhancing disaster management strategies, focusing on how extensive datasets can improve risk mitigation, response efficiency, and recovery processes. Methods: The research employs a comprehensive review of data-driven disaster management techniques, including Geographic Information Systems (GIS), Artificial Intelligence (AI), and the Internet of Things (IoT). It analyzes how these technologies utilize big data to predict, prepare for, and manage disasters. Additionally, the study examines the role of data-driven decision support systems and process mining in refining disaster management approaches. Results: Findings reveal that big data analytics significantly enhances predictive capabilities, response efficiency, and recovery operations. GIS technologies offer detailed spatial insights, AI improves predictive modeling, and IoT provides real-time situational awareness. The integration of these technologies supports more effective disaster preparedness and response strategies, although challenges in data quality and ethical concerns persist.

Downloads

Download data is not yet available.

References

Mardani, A., Hooker, R.E., Ozkul, S., Yifan, S., Nilashi, M., Sabzi, H.Z., Fei, G.C.: Application of decision making and fuzzy sets theory to evaluate the healthcare and medical problems: A review of three decades of research with recent developments. Expert Syst. Appl. (2019). https://doi.org/10.1016/j.eswa.2019.07.002 DOI: https://doi.org/10.1016/j.eswa.2019.07.002

Ghasemi, M., Amyot, D.: Process mining in healthcare: a systematised literature review. IJEH (2016). https://doi.org/10.1504/IJEH.2016.078745 DOI: https://doi.org/10.1504/IJEH.2016.078745

Glaize, A., Duenas, A., Di. Martinelly, C., Fagnot, I.: Healthcare decision-making applications using multi-criteria decision analysis: A scoping review. J Multi-Crit Decis Anal (2019). https://doi.org/10.1002/mcda.1659 DOI: https://doi.org/10.1002/mcda.1659

Tuzkaya, G., Sennaroglu, B., Kalender, Z.T., Mutlu, M.: Hospital service quality evaluation with IVIF-PROMETHEE and a case study. Socioecon. Plann. Sci. (2019). https://doi.org/10.1016/j.seps.2019.04.002 DOI: https://doi.org/10.1016/j.seps.2019.04.002

Stević, Ž, Pamučar, D., Puška, A., Chatterjee, P.: Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Comput. Ind. Eng. (2020). https://doi.org/10.1016/j.cie.2019.106231 DOI: https://doi.org/10.1016/j.cie.2019.106231

Farshidi, S., Jansen, S., de Jong, R., Brinkkemper, S.: A decision support system for software technology selection. J. Decis. Syst. (2018). https://doi.org/10.1080/12460125.2018.1464821 DOI: https://doi.org/10.1080/12460125.2018.1464821

Akter, S., Bandara, R., Hani, U., Fosso Wamba, S., Foropon, C., Papadopoulos, T.: Analytics-based decision-making for service systems: A qualitative study and agenda for future research. Int. J. Inf. Manage. (2019). https://doi.org/10.1016/j.ijinfomgt.2019.01.020 DOI: https://doi.org/10.1016/j.ijinfomgt.2019.01.020

Eom, S., Kim, E.: A survey of decision support system applications (1995–2001). J. Op. Res. Soc. (2006). https://doi.org/10.1057/palgrave.jors.2602140 DOI: https://doi.org/10.1057/palgrave.jors.2602140

Chen, J.Q., Lee, S.M.: An exploratory cognitive DSS for strategic decision making. Decis. Support Syst. (2003). https://doi.org/10.1016/S0167-9236(02)00139-2 DOI: https://doi.org/10.1016/S0167-9236(02)00139-2

Anabila, P., Kumi, D.K., Anome, J.: Patients’ perceptions of healthcare quality in Ghana. Int. J. Health Care QA (2019). https://doi.org/10.1108/IJHCQA-10-2017-0200 DOI: https://doi.org/10.1108/IJHCQA-10-2017-0200

Al-Qatawneh, L., Abdallah, A.A.A., Zalloum, S.S.Z.: Six sigma application in healthcare logistics: a framework and a case study. J. Healthcare Eng. (2019). https://doi.org/10.1155/2019/9691568 DOI: https://doi.org/10.1155/2019/9691568

Jans, M., Soffer, P., Jouck, T.: Building a valuable event log for process mining: an experimental exploration of a guided process. Enterp. Inf. Syst. (2019). https://doi.org/10.1080/17517575.2019.1587788 DOI: https://doi.org/10.1080/17517575.2019.1587788

Baier, T., Mendling, J., Weske, M.: Bridging abstraction layers in process mining. Inf. Syst. (2014). https://doi.org/10.1016/j.is.2014.04.004 DOI: https://doi.org/10.1016/j.is.2014.04.004

Ghobakhloo, M., Hong, T.S.: IT investments and business performance improvement: the mediating role of lean manufacturing implementation. Int. J. Prod. Res. (2014). https://doi.org/10.1080/00207543.2014.906761 DOI: https://doi.org/10.1080/00207543.2014.906761

Reijers, H.A., Vanderfeesten, I., van der Aalst, W.: The effectiveness of workflow management systems: A longitudinal study. Int. J. Inf. Manage. (2016). https://doi.org/10.1016/j.ijinfomgt.2015.08.003 DOI: https://doi.org/10.1016/j.ijinfomgt.2015.08.003

Ahmed, E.S., Ahmad, M.N., Othman, S.H.: Business process improvement methods in healthcare: a comparative study. Int. J. Health Care Qual. Assur. (2019). https://doi.org/10.1108/IJHCQA-07-2017-0116 DOI: https://doi.org/10.1108/IJHCQA-07-2017-0116

Jans, M., Alles, M., Vasarhelyi, M.: The case for process mining in auditing: Sources of value added and areas of application. Int. J. Account. Inf. Syst. (2013). https://doi.org/10.1016/j.accinf.2012.06.015 DOI: https://doi.org/10.1016/j.accinf.2012.06.015

Cook, J.E., Wolf, A.L.: Process discovery and validation through event-data analysis. Doctoral dissertation, University of Colorado (1996)

Bolt, A., de Leoni, M.: van der Aalst, WMP: Scientific workflows for process mining: building blocks, scenarios, and implementation. Int J Softw Tools Technol Transfer (2016). https://doi.org/10.1007/s10009-015-0399-5 DOI: https://doi.org/10.1007/s10009-015-0399-5

De Medeiros, A.A., van Dongen, B.F., Van der Aalst, W.M., Weijters, A.J.M.M: Process mining: extending the α-algorithm to mine short loops (2004)

Razmak, J., Aouni, B.: Decision support system and multi-criteria decision aid: a state of the art and perspectives. J. Multi-Crit. Decis. Anal. (2015). https://doi.org/10.1002/mcda.1530 DOI: https://doi.org/10.1002/mcda.1530

Behzadian, M., Kazemzadeh, R.B., Albadvi, A., Aghdasi, M.: PROMETHEE: A comprehensive literature review on methodologies and applications. CIPS Supply Management (2010). https://doi.org/10.1016/j.ejor.2009.01.021 DOI: https://doi.org/10.1016/j.ejor.2009.01.021

Albadvi, A., Chaharsooghi, S.K., Esfahanipour, A.: Decision making in stock trading: An application of PROMETHEE. CIPS Supply Manag. (2007). https://doi.org/10.1016/j.ejor.2005.11.022 DOI: https://doi.org/10.1016/j.ejor.2005.11.022

Abdelhadi, A.: Maintenance scheduling based on PROMETHEE method in conjunction with group technology philosophy. Int J Qual Reliability Mgmt (2018). https://doi.org/10.1108/IJQRM-03-2017-0053 DOI: https://doi.org/10.1108/IJQRM-03-2017-0053

Briggs, T., Kunsch, P.L., Mareschal, B.: Nuclear waste management: An application of the multi-criteria PROMETHEE methods. CIPS Supply Manag. (1990). https://doi.org/10.1016/0377-2217(90)90308-X DOI: https://doi.org/10.1016/0377-2217(90)90308-X

Schwartz, M., Göthner, M.: A multidimensional evaluation of the effectiveness of business incubators: an application of the promethee outranking method. Environ Plann C Gov Policy (2009). https://doi.org/10.1068/c0897b DOI: https://doi.org/10.1068/c0897b

Ishizaka, A., Resce, G., Mareschal, B.: Visual management of performance with PROMETHEE productivity analysis. Soft. Comput. (2018). https://doi.org/10.1007/s00500-017-2884-0 DOI: https://doi.org/10.1007/s00500-017-2884-0

Nassereddine, M., Azar, A., Rajabzadeh, A., Afsar, A.: Decision making application in collaborative emergency response: A new PROMETHEE preference function. Int. J. Disaster Risk Reduct. (2019). https://doi.org/10.1016/j.ijdrr.2019.101221 DOI: https://doi.org/10.1016/j.ijdrr.2019.101221

Singh, A., Gupta, A., Mehra, A.: Best criteria selection based PROMETHEE II method. Opsearch (2020). https://doi.org/10.1007/s12597-020-00464-7 DOI: https://doi.org/10.1007/s12597-020-00464-7

Amaral, T.M., Costa, A.P.: Improving decision-making and management of hospital resources: An application of the PROMETHEE II method in an emergency department. Op. Res. Health Care (2014). https://doi.org/10.1016/j.orhc.2013.10.002 DOI: https://doi.org/10.1016/j.orhc.2013.10.002

Ozsahin, D.U., Isa, N.A., Uzun, B., Ozsahin, I.: Effective analysis of image reconstruction algorithms in nuclear medicine using fuzzy PROMETHEE. In: 2018 Advances in Science and Engineering Technology International Conferences (ASET), pp. 1–5. IEEE (2018). https://doi.org/10.1109/ICASET.2018.8376892 DOI: https://doi.org/10.1109/ICASET.2018.8376892

Hulshof, P. J. H., Kortbeek, N., Boucherie, R. J., Hans, E. W., & Bakker, P. J. M. (2012). Taxonomic classification of planning decisions in health care: A structured review of the state of the art in OR/MS. Health Systems, 1(2), 129–175. https://doi.org/10.1057/hs.2012.18 DOI: https://doi.org/10.1057/hs.2012.18

Shakoor, M. (2015). Using discrete event simulation approach to reduce waiting times in computed tomography radiology department. International Journal of Industrial and Manufacturing Engineering, 9(1), 177–181. https://doi.org/10.5281/zenodo.1338044

Vieira, B., Hans, E. W., van Vliet-Vroegindeweij, C., van de Kamer, J., & van Harten, W. (2016). Operations research for resource planning and -use in radiotherapy: A literature review. BMC Medical Informatics and Decision Making, 16(1), 149. https://doi.org/10.1186/s12911-016-0390-4 DOI: https://doi.org/10.1186/s12911-016-0390-4

Cai, H., & Jia, J. (2019). Using discrete event simulation (DES) to support performance-driven healthcare design. HERD: Health Environments Research & Design Journal, 12(3), 89–106. https://doi.org/10.1177/1937586718801910 DOI: https://doi.org/10.1177/1937586718801910

Ponis, S. T., Delis, A., Gayialis, S. P., Kasimatis, P., & Tan, J. (2013). Applying discrete event simulation (DES) in healthcare: The case for outpatient facility capacity planning. International Journal of Healthcare Information Systems and Informatics, 8(3), 58–79. https://doi.org/10.4018/jhisi.2013070104 DOI: https://doi.org/10.4018/jhisi.2013070104

Carmen, R., Defraeye, M., & Van Nieuwenhuyse, I. (2015). A decision support system for capacity planning in emergency departments. International Journal of Simulation and Process Modelling, 14(2), 299–312. https://doi.org/10.2507/ijsimm14(2)10.308 DOI: https://doi.org/10.2507/IJSIMM14(2)10.308

Ibrahim, I. M., Liong, C.-Y., Bakar, S. A., Ahmad, N., & Najmuddin, A. F. (2017). Minimizing patient waiting time in emergency department of public hospital using simulation optimization approach. In Z. H. Zamzuri (Ed.), Proceedings of the 4th International Conference on Mathematical Sciences (Vol. 1830, pp. 060005-1–8). AIP Publishing. https://doi.org/10.1063/1.4980949 DOI: https://doi.org/10.1063/1.4980949

Saleh, B. B., Saleh, G. B., & Barakat, O. (2021). Operating theater management system: Block-scheduling. In M. Masmoudi, B. Jarboui, & P. Siarry (Eds.), Artificial Intelligence and Data Mining in Healthcare (pp. 83–98). Springer International Publishing. https://doi.org/10.1007/978-3-030-45240-7_5 DOI: https://doi.org/10.1007/978-3-030-45240-7_5

Legrain, A., Fortin, M.-A., Lahrichi, N., & Rousseau, L.-M. (2015). Online stochastic optimization of radiotherapy patient scheduling. Health Care Management Science, 18(2), 110–123. https://doi.org/10.1007/s10729-014-9270-6 DOI: https://doi.org/10.1007/s10729-014-9270-6

Petrovic, D., Castro, E., Petrovic, S., & Kapamara, T. (2013). Radiotherapy scheduling. In A. Ş. Etaner-Uyar, E. Özcan, N. Urquhart, & J. Kacprzyk (Eds.), Automated Scheduling and Planning: From Theory to Practice (Vol. 505, pp. 155–189). Springer. https://doi.org/10.1007/978-3-642-39304-4_7 DOI: https://doi.org/10.1007/978-3-642-39304-4_7

Ganguly, A., & Nandi, S. (2016). Using statistical forecasting to optimize staff scheduling in healthcare organizations. Journal of Health Management, 18(1), 172–181. https://doi.org/10.1177/0972063415625575 DOI: https://doi.org/10.1177/0972063415625575

Antunes, B. B. P., Manresa, A., Bastos, L. S. L., Marchesi, J. F., & Hamacher, S. (2019). A solution framework based on process mining, optimization, and discrete-event simulation to improve queue performance in an emergency department. In C. Di Francescomarino, R. M. Dijkman, U. Zdun, W. M. P. van der Aalst, J. Mylopoulos, M. Rosemann, M. J. Shaw, & C. Szyperski (Eds.), Proceedings of the Business Process Management Workshops (Vol. 362, pp. 583–594). Springer International Publishing. https://doi.org/10.1007/978-3-030-37453-2_47 DOI: https://doi.org/10.1007/978-3-030-37453-2_47

Saedi, S., Kundakcioglu, O. E., & Henry, A. C. (2016). Mitigating the impact of drug shortages for a healthcare facility: An inventory management approach. European Journal of Operational Research, 251(1), 107–123. https://doi.org/10.1016/j.ejor.2015.11.017 DOI: https://doi.org/10.1016/j.ejor.2015.11.017

Daldoul, D., Nouaouri, I., Bouchriha, H., & Allaoui, H. (2017). Scheduling patients in emergency department: A case study. In Proceedings of the 2017 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 870–874). IEEE. https://doi.org/10.1109/IEEM.2017.8290016 DOI: https://doi.org/10.1109/IEEM.2017.8290016

Katsaliaki, K., & Mustafee, N. (2011). Applications of simulation within the healthcare context. Journal of the Operational Research Society, 62(8), 1431–1451. https://doi.org/10.1057/jors.2010.20 DOI: https://doi.org/10.1057/jors.2010.20

Brailsford, S. C. (2007). Tutorial: Advances and challenges in healthcare simulation modeling. In S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, & R. R. Barton (Eds.), Proceedings of the 2007 Winter Simulation Conference (pp. 1436–1448). IEEE. https://doi.org/10.1109/WSC.2007.4419754 DOI: https://doi.org/10.1109/WSC.2007.4419754

Robinson, S. (2005). Discrete-event simulation: From the pioneers to the present, what next? Journal of the Operational Research Society, 56(6), 619-629. https://doi.org/10.1057/palgrave.jors.2601864 DOI: https://doi.org/10.1057/palgrave.jors.2601864

Jun, J. B., Jacobson, S. H., & Swisher, J. R. (1999). Application of discrete-event simulation in health care clinics: A survey. Journal of the Operational Research Society, 50(2), 109-123. https://doi.org/10.1057/palgrave.jors.2600669 DOI: https://doi.org/10.1057/palgrave.jors.2600669

Salleh, S., Thokala, P., Brennan, A., Hughes, R., & Booth, A. (2017). Simulation modelling in healthcare: An umbrella review of systematic literature reviews. PharmacoEconomics, 35(9), 937-949. https://doi.org/10.1007/s40273-017-0523-3 DOI: https://doi.org/10.1007/s40273-017-0523-3

Günal, M. M., & Pidd, M. (2010). Discrete event simulation for performance modelling in health care: A review of the literature. Journal of Simulation, 4(1), 42-51. https://doi.org/10.1057/jos.2009.25 DOI: https://doi.org/10.1057/jos.2009.25

Brailsford, S. C., Harper, P. R., Patel, B., & Pitt, M. (2009). An analysis of the academic literature on simulation and modeling in health care. Journal of Simulation, 3(2), 130-140. https://doi.org/10.1057/jos.2009.10 DOI: https://doi.org/10.1057/jos200910

Zhang, X. (2018). Application of discrete event simulation in health care: A systematic review. BMC Health Services Research, 18(1), 687. https://doi.org/10.1186/s12913-018-3456-4 DOI: https://doi.org/10.1186/s12913-018-3456-4

van der Aalst, W. M. P. (2016). Process mining: Data science in action (2nd ed.). Springer. https://doi.org/10.1007/978-3-662-49851-4 DOI: https://doi.org/10.1007/978-3-662-49851-4_1

Rozinat, A., Mans, R. S., Song, M., & van der Aalst, W. M. P. (2009). Discovering simulation models. Information Systems, 34(3), 305-327. https://doi.org/10.1016/j.is.2008.09.002 DOI: https://doi.org/10.1016/j.is.2008.09.002

Khodyrev, I., & Popova, S. (2014). Discrete modeling and simulation of business processes using event logs. In D. Abramson, M. Lees, V. Krzhizhanovskaya, J. Dongarra, & P. M. A. Sloot (Eds.), Proceedings of the 14th International Conference on Computational Science (Vol. 29, pp. 322-331). Elsevier. https://doi.org/10.1016/j.procs.2014.05.029 DOI: https://doi.org/10.1016/j.procs.2014.05.029

Vanbrabant, L., Martin, N., Ramaekers, K., & Braekers, K. (2019). Quality of input data in emergency department simulations: Framework and assessment techniques. Simulation Modelling Practice and Theory, 91, 83-101. https://doi.org/10.1016/j.simpat.2018.12.002 DOI: https://doi.org/10.1016/j.simpat.2018.12.002

Di Ciccio, C., Marrella, A., & Russo, A. (2015). Knowledge-intensive processes: Characteristics, requirements and analysis of contemporary approaches. Journal of Data Semantics, 4(1), 29-57. https://doi.org/10.1007/s13740-014-0038-4 DOI: https://doi.org/10.1007/s13740-014-0038-4

Johnson, O. A., Ba Dhafari, T., Kurniati, A., Fox, F., & Rojas, E. (2019). The ClearPath method for care pathway process mining and simulation. In F. Daniel, Q. Z. Sheng, H. Motahari (Eds.), Proceedings of the Business Process Management International Workshops (Vol. 342, pp. 239-250). Springer. https://doi.org/10.1007/978-3-030-11641-5_19 DOI: https://doi.org/10.1007/978-3-030-11641-5_19

Augusto, V., Xie, X., Prodel, M., Jouaneton, B., & Lamarsalle, L. (2016). Evaluation of discovered clinical pathways using process mining and joint agent-based discrete-event simulation. In T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. R. Huschka, & S. E. Chick (Eds.), Proceedings of the 2016 Winter Simulation Conference (pp. 2135-2146). IEEE. https://doi.org/10.1109/WSC.2016.7822256 DOI: https://doi.org/10.1109/WSC.2016.7822256

Mans, M., Ronny, S., Reijers, H. A., Wismeijer, D., & van Genuchten, M. (2013). A process-oriented methodology for evaluating the impact of IT: A proposal and an application in healthcare. Information Systems, 38(8), 1097-1115. https://doi.org/10.1016/j.is.2013.06.005 DOI: https://doi.org/10.1016/j.is.2013.06.005

Kovalchuk, S. V., Funkner, A. A., Metsker, O. G., & Yakovlev, A. N. (2018). Simulation of patient flow in multiple healthcare units using process and data mining techniques for model identification. Journal of Biomedical Informatics, 82, 128-142. https://doi.org/10.1016/j.jbi.2018.05.004 DOI: https://doi.org/10.1016/j.jbi.2018.05.004

Tamburis, O., & Esposito, C. (2020). Process mining as support to simulation modeling: A hospital-based case study. Simulation Modelling Practice and Theory, 104, Article 102149. https://doi.org/10.1016/j.simpat.2020.102149 DOI: https://doi.org/10.1016/j.simpat.2020.102149

Zhou, Z., Wang, Y., & Li, L. (2014). Process mining based modeling and analysis of workflows in clinical care: A case study in a Chicago outpatient clinic. In M. Pan & W. Wu (Eds.), Proceedings of the 11th IEEE International Conference on Networking, Sensing and Control (pp. 590-595). IEEE. https://doi.org/10.1109/icnsc.2014.6819692 DOI: https://doi.org/10.1109/ICNSC.2014.6819692

Abohamad, W., Ramy, A., & Arisha, A. (2017). A hybrid process-mining approach for simulation modeling. In W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, & E. H. Page (Eds.), Proceedings of the 2017 Winter Simulation Conference (pp. 1527-1538). IEEE. https://doi.org/10.1109/WSC.2017.8247894 DOI: https://doi.org/10.1109/WSC.2017.8247894

Bose, R. P. J. C., Mans, R. S., & van der Aalst, W. M. P. (2013). Wanna improve process mining results? It’s high time we consider data quality issues seriously. In B. Hammer, Z.-H. Zhou, L. Wang, & N. Chawla (Eds.), Proceedings of the 2013 IEEE Symposium on Computational Intelligence and Data Mining (pp. 127-134). IEEE. https://doi.org/10.1109/CIDM.2013.6597227 DOI: https://doi.org/10.1109/CIDM.2013.6597227

Suriadi, S., Andrews, R., ter Hofstede, A. H. M., & Wynn, M. T. (2017). Event log imperfection patterns for process mining: Towards a systematic approach to cleaning event logs. Information Systems, 64, 132-150. https://doi.org/10.1016/j.is.2016.07.011 DOI: https://doi.org/10.1016/j.is.2016.07.011

Andrews, R., Wynn, M. T., Vallmuur, K., ter Hofstede, A. H. M., Bosley, E., Elcock, M., & Rashford, S. (2019). Leveraging data quality to better prepare for process mining: An approach illustrated through analysing road trauma pre-hospital retrieval and transport processes in Queensland. International Journal of Environmental Research and Public Health, 16(7), 1138. https://doi.org/10.3390/ijerph16071138 DOI: https://doi.org/10.3390/ijerph16071138

Kherbouche, M. O., Laga, N., & Masse, P.-A. (Eds.). (2016). Towards a better assessment of event logs quality. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI ’16, pp. 1-8). IEEE. https://doi.org/10.1109/SSCI.2016.7849946 DOI: https://doi.org/10.1109/SSCI.2016.7849946

Fischer, D. A., Goel, K., Andrews, R., van Dun, C. G. J., Wynn, M. T., & Röglinger, M. (2020). Enhancing event log quality: Detecting and quantifying timestamp imperfections. In D. Fahland, C. Ghidini, J. Becker, & M. Dumas (Eds.), Proceedings of the 18th International Conference on Business Process Management (Vol. 12168, pp. 309-326). Springer International Publishing. https://doi.org/10.1007/978-3-030-58666-9_18 DOI: https://doi.org/10.1007/978-3-030-58666-9_18

Dixit, P. M., Suriadi, S., Andrews, R., Wynn, M. T., ter Hofstede, A. H. M., Buijs, J. C. A. M., & van der Aalst, W. M. P. (2018). Detection and interactive repair of event ordering imperfection in process logs. In J. Krogstie & H. A. Reijers (Eds.), Proceedings of the 30th International Conference on Advanced Information Systems Engineering (Vol. 10816, pp. 274-290). Springer International Publishing. https://doi.org/10.1007/978-3-319-91563-0_17 DOI: https://doi.org/10.1007/978-3-319-91563-0_17

Fox, F., Aggarwal, V. R., Whelton, H., & Johnson, O. A. (Eds.). (2018). A data quality framework for process mining of electronic health record data. In Proceedings of the 2018 IEEE International Conference on Healthcare Informatics (ICHI ’18, pp. 12-21). IEEE. https://doi.org/10.1109/ICHI.2018.00009 DOI: https://doi.org/10.1109/ICHI.2018.00009

Andrews, R., Suriadi, S., Ouyang, C., & Poppe, E. (2018). Towards event log querying for data quality. In H. Panetto, C. Debruyne, H. A. Proper, C. A. Ardagna, D. Roman, & R. Meersman (Eds.), On the Move to Meaningful Internet Systems (Vol. 11229, pp. 116-134). Springer International Publishing. https://doi.org/10.1007/978-3-030-02610-3_7 DOI: https://doi.org/10.1007/978-3-030-02610-3_7

Bayomie, D., Awad, A., & Ezat, E. (2016). Correlating unlabeled events from cyclic business processes execution. In S. Nurcan, P. Soffer, M. Bajec, & J. Eder (Eds.), Proceedings of the 28th International Conference on Advanced Information Systems Engineering (Vol. 9694, pp. 274-289). Springer International Publishing. https://doi.org/10.1007/978-3-319-39696-5_17 DOI: https://doi.org/10.1007/978-3-319-39696-5_17

Di Francescomarino, C., Ghidini, C., Tessaris, S., & Sandoval, I. V. (2015). Completing workflow traces using action languages. In J. Zdravkovic, M. Kirikova, & P. Johannesson (Eds.), Proceedings of the 27th International Conference on Advanced Information Systems Engineering (Vol. 9097, pp. 314-330). Springer International Publishing. https://doi.org/10.1007/978-3-319-19069-3_20 DOI: https://doi.org/10.1007/978-3-319-19069-3_20

Published

15-01-2022

How to Cite

Algfari, S. M., Alghamdi, A. S., Almuhaylib, A. M., Alzaher, M. A., Alotaibi, S. S., Alanazi, ‎‏Zaid H., Alwaked, M. H., Al-Sharari, F. A., Alrashidi, A. A., Alrasheedi, B. B., Alsarimi, F. A. H., Alanazi, A. A., & Alumtairi, A. Z. (2022). Data-driven approaches to improving emergency response times and patient outcomes. International Journal of Health Sciences, 6(S10), 1833–1849. https://doi.org/10.53730/ijhs.v6nS10.15151

Issue

Section

Peer Review Articles

Most read articles by the same author(s)

1 2 > >>