COVID-19 severe conditions: EMS, pharmacists, and health informatics strategies and community impact
Review article
Keywords:
COVID-19, SARS-CoV-2, Delta variant, Omicron variant, Emergency Medical Services, disease severity, global pandemicAbstract
Background: COVID-19, caused by SARS-CoV-2, has emerged as a global pandemic since late 2019, with significant impacts on health systems and communities worldwide. The virus, which affects respiratory and other systems, has seen the emergence of several variants, including Delta and Omicron, each with distinct impacts on transmissibility and disease severity. Aim: This review aims to provide an updated overview of COVID-19's severe conditions, the strategies used by Emergency Medical Services (EMS), pharmacists, and health information for controlling and management, and the overall community impact. Methods: A comprehensive literature review was conducted using PubMed and Google Scholar up to December 31, 2021. Search terms included 'COVID,' 'COVID-19,' 'SARS-CoV-2,' and 'coronavirus,' focusing on retrospective and prospective studies, systematic reviews, meta-analyses, and clinical guidelines. The review included 194 pertinent sources, emphasizing emergency medicine-related research. Results: The review highlights the rapid global spread of COVID-19, the emergence and impact of variants like Delta and Omicron, and their association with increased transmissibility and severe disease outcomes. Key findings include the Delta variant’s higher viral loads and association with severe illness, and the Omicron variant’s high transmissibility and potential reduced severity of disease. Hospitalization and mortality rates have evolved with advancements in treatment and vaccination.
Downloads
References
World Health Organization. (2021). WHO coronavirus 2019 (COVID-19) pandemic. Retrieved from https://www.who.int/emergencies/diseases/novel-coronavirus-2019
Centers for Disease Control and Prevention. (n.d.). COVID-19. Retrieved August 21, 2021, from https://www.cdc.gov/coronavirus/2019-ncov/index.html
Chavez, S., Long, B., Koyfman, A., & Liang, S. Y. (2021). Coronavirus disease (COVID-19): A primer for emergency physicians. American Journal of Emergency Medicine, 44, 220-229. DOI: https://doi.org/10.1016/j.ajem.2020.03.036
Johns Hopkins University and Medicine. (n.d.). Coronavirus Resource Center. Retrieved August 21, 2021, from https://coronavirus.jhu.edu
Belouzard, S., Millet, J. K., Licitra, B. N., & Whittaker, G. R. (2012). Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 4(6), 1011-1033. DOI: https://doi.org/10.3390/v4061011
Centers for Disease Control and Prevention. (2021, July 13). SARS-CoV-2 variant classifications and definitions. Retrieved July 19, 2021, from https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html#Consequence
Centers for Disease Control and Prevention. (2021, November 27). What you need to know about variants. Retrieved November 27, 2021, from https://www.cdc.gov/coronavirus/2019-ncov/variants/variant.html
Davies, N. G., Abbott, S., Barnard, R. C., et al. (2021). Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science, 372(6538). https://doi.org/10.1126/science.abg3055 DOI: https://doi.org/10.1126/science.abg3055
Zimmer, C. (2021, March 6). The new COVID variant in the UK. The New York Times. Retrieved July 19, 2021, from https://www.nytimes.com
Hart, R. (2021, July 6). Pfizer shot much less effective against Delta, Israel study shows — Here’s what you need to know about variants and vaccines. Forbes. Retrieved July 30, 2021, from https://www.forbes.com
Dyer, O. (2021, August 2). Covid-19: Delta infections threaten herd immunity vaccine strategy. BMJ, 374. https://doi.org/10.1136/bmj.n1933 DOI: https://doi.org/10.1136/bmj.n1933
Lopez Bernal, J., Andrews, N., Gower, C., et al. (2021). Effectiveness of COVID-19 vaccines against the B.1.617.2 (Delta) variant. New England Journal of Medicine. https://doi.org/10.1056/NEJMoa2108891 DOI: https://doi.org/10.1056/NEJMoa2108891
Dougherty, K., Mannell, M., Naqvi, O., et al. (2021). SARS-CoV-2 B.1.617.2 (Delta) variant COVID-19 outbreak associated with a gymnastics facility - Oklahoma, April-May 2021. MMWR Morbidity and Mortality Weekly Report, 70(28), 1004-1007. DOI: https://doi.org/10.15585/mmwr.mm7028e2
World Health Organization. (2021, November 26). Classification of Omicron (B.1.1.529): SARS-CoV-2 variant of concern. Retrieved December 26, 2021, from https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern
Centers for Disease Control and Prevention. (2021, December 26). CDC statement on B.1.1529 (Omicron variant). Retrieved December 26, 2021, from https://www.cdc.gov/media/releases/2021/s1126-B11-529-omicron.htm
Zhu, N., Zhang, D., Wang, W., China Novel Coronavirus Investigating and Research Team, et al. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727-733. DOI: https://doi.org/10.1056/NEJMoa2001017
Del Rio, C., & Malani, P. N. (2020). COVID-19-new insights on a rapidly changing epidemic. JAMA, 323(14), 1339-1340. DOI: https://doi.org/10.1001/jama.2020.3072
Guan, W. J., Ni, Z. Y., Hu, Y., et al. (2020). China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine, 382(18), 1708-1720.
Ong, S. W. X., Chiew, C. J., Ang, L. W., et al. (2021). Clinical and virological features of SARS-CoV-2 variants of concern: A retrospective cohort study comparing B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.2 (Delta). Clinical Infectious Diseases. https://doi.org/10.1093/cid/ciab721 DOI: https://doi.org/10.1093/cid/ciab721
Wiersinga, W. J., Rhodes, A., Cheng, A. C., et al. (2020). Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review. JAMA, 324(8), 782-793. DOI: https://doi.org/10.1001/jama.2020.12839
Wang, W., Xu Y., Gao, R., et al. (2020). Detection of SARS-CoV-2 in different types of clinical specimens. JAMA, 323(18), 1843-1844. DOI: https://doi.org/10.1001/jama.2020.3786
Wang, D., Hu, B., Hu, C., et al. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 325(11), 1113. DOI: https://doi.org/10.1001/jama.2020.1585
Zhou, F., Yu, T., Du, R., et al. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 395(10229), 1054-1062. DOI: https://doi.org/10.1016/S0140-6736(20)30566-3
Cheung, K. S., Hung, I. F. N., Chan, P. P. Y., et al. (2020). Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: Systematic review and meta-analysis. Gastroenterology, 159(1), 81-95. DOI: https://doi.org/10.1053/j.gastro.2020.03.065
Colavita, F., Lapa, D., Carletti, F., et al. (2020). SARS-CoV-2 isolation from ocular secretions of a patient with COVID-19 in Italy with prolonged viral RNA detection. Annals of Internal Medicine, 173(3), 242-243. DOI: https://doi.org/10.7326/M20-1176
Wu, Z., & McGoogan, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA, 323(13), 1239-1242. https://doi.org/10.1001/jama.2020.2648 DOI: https://doi.org/10.1001/jama.2020.2648
Byambasuren, O., Cardona, M., Bell, K., et al. (2020). Estimating the extent of asymptomatic COVID-19 and its potential for community transmission: Systematic review and meta-analysis. Open Forum Infectious Diseases, 5(4), 223-234. https://doi.org/10.1093/ofid/ofaa429 DOI: https://doi.org/10.3138/jammi-2020-0030
Liu, Y., & Rocklöv, J. (2021). The reproductive number of the Delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus. Journal of Travel Medicine. https://doi.org/10.1093/jtm/taab124 DOI: https://doi.org/10.1093/jtm/taab124
Sanche, S., Lin, Y. T., Xu, C., et al. (2020). High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerging Infectious Diseases, 26(7), 1470-1477. https://doi.org/10.3201/eid2607.200282 DOI: https://doi.org/10.3201/eid2607.200282
Gunzler, D., & Sehgal, A. R. (2020). Time-varying COVID-19 reproduction number in the United States. Preprint medRxiv. https://doi.org/10.1101/2020.04.10.20060863 DOI: https://doi.org/10.1101/2020.04.10.20060863
UK Government. (2021, December 23). Investigation of SARS-CoV-2 variants: Technical briefings. Retrieved from https://www.gov.uk/government/publications/investigation-of-sars-cov-2-variants-technical-briefings
Centers for Disease Control and Prevention. (2021). COVID Data Tracker. Retrieved from https://covid.cdc.gov/covid-data-tracker/#variant-proportions
Sheikh, A., McMenamin, J., Taylor, B., & Robertson, C. (2021). Public Health Scotland and the EAVE II Collaborators. SARS-CoV-2 Delta VOC in Scotland: Demographics, risk of hospital admission, and vaccine effectiveness. The Lancet, 397(10293), 2461-2462. https://doi.org/10.1016/S0140-6736(21)01638-5 DOI: https://doi.org/10.1016/S0140-6736(21)01358-1
World Health Organization. (2021, December 10). Enhancing readiness for Omicron (B.1.1.529): Technical brief and priority actions for member states. Retrieved from https://www.who.int/publications/m/item/enhancing-readiness-for-omicron-(b.1.1.529)-technical-brief-and-priority-actions-for-member-states
Hall, V. J., Foulkes, S., Charlett, A., et al. (2021). SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: A large, multicentre, prospective cohort study (SIREN). The Lancet, 397(10283), 1459-1469. https://doi.org/10.1016/S0140-6736(21)00675-9 DOI: https://doi.org/10.1016/S0140-6736(21)00675-9
Hansen, C. H., Michlmayr, D., Gubbels, S. M., Mølbak, K., & Ethelberg, S. (2021). Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: A population-level observational study. The Lancet, 397(10280), 1204-1212. https://doi.org/10.1016/S0140-6736(21)00408-2 DOI: https://doi.org/10.1016/S0140-6736(21)00575-4
Rossler, A., Riepler, L., Bante, D., et al. (2021). SARS-CoV-2 B.1.1.529 variant (Omicron) evades neutralization by sera from vaccinated and convalescent individuals. Unpublished. https://doi.org/10.1101/2021.12.08.21267491 DOI: https://doi.org/10.1101/2021.12.08.21267491
Pulliam, J. R. C., van Schalkwyk, C., Govender, N., et al. (2021). Increased risk of SARS-CoV-2 reinfection associated with emergence of the Omicron variant in South Africa. MedRxiv. https://doi.org/10.1101/2021.11.11.21266068 DOI: https://doi.org/10.1101/2021.11.11.21266068
Wilhelm, A., Widera, M., Grikscheit, K., et al. (2021). Reduced neutralization of SARS-CoV-2 Omicron variant by vaccine sera and monoclonal antibodies. MedRxiv. https://doi.org/10.1101/2021.12.07.21267432 DOI: https://doi.org/10.1101/2021.12.07.21267432
Collie, S., Champion, J., Moultrie, H., Bekker, L. G., & Gray, G. (2021). Effectiveness of BNT162b2 vaccine against Omicron variant in South Africa. New England Journal of Medicine. https://doi.org/10.1056/NEJMc2119270 DOI: https://doi.org/10.1056/NEJMc2119270
Discovery Health. (2021, December 14). Discovery Health releases at-scale real-world analysis of Omicron outbreak; including collaboration with the SA Medical Research Council (SAMRC) to analyse vaccine effectiveness. Retrieved from https://www.discovery.co.za/corporate/health-insights-omicron-outbreak-analysis
South African Medical Research Council. (2021, December 6). Tshwane District Omicron variant patient profile - Early features. Retrieved from https://www.samrc.ac.za/news/tshwane-district-omicron-variant-patient-profile-early-features
Imperial College London. (2021, December 16). Report 49 - Growth, population distribution and immune escape of Omicron in England. Retrieved from https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-49-Omicron/
Imperial College London. (2021, December 22). Report 50 - Hospitalisation risk for Omicron cases in England. Retrieved from https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-50-Severity-Omicron/
Rochwerg, B., Agarwal, A., Siemieniuk, R. A., Agoritsas, T., Lamontagne, F., Askie, L., et al. (2020). A living WHO guideline on drugs for COVID-19. BMJ, 370, m3379. https://doi.org/10.1136/bmj.m3379 DOI: https://doi.org/10.1136/bmj.m3379
Oran, D. P., & Topol, E. J. (2021). The proportion of SARS-CoV-2 infections that are asymptomatic: A systematic review. Annals of Internal Medicine, 174(5), 655-662. https://doi.org/10.7326/M20-6976 DOI: https://doi.org/10.7326/M20-6976
Epidemiology Working Group for NCIP Epidemic Response. (2020). Zhonghua Liu Xing Bing Xue Za Zhi, 41*(2), 145-151.
Zaim, S., Chong, J. H., Sankaranarayanan, V., & Harky, A. (2020). COVID-19 and multiorgan response. Current Problems in Cardiology, 45(8), Article 100618. https://doi.org/10.1016/j.cpcardiol.2020.100618 DOI: https://doi.org/10.1016/j.cpcardiol.2020.100618
Lauer, S. A., Grantz, K. H., Bi, Q., et al. (2020). The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Annals of Internal Medicine, 172(9), 577-582. https://doi.org/10.7326/M20-0504 DOI: https://doi.org/10.7326/M20-0504
He, J., Guo, Y., Mao, R., & Zhang, J. (2021). Proportion of asymptomatic coronavirus disease 2019: A systematic review and meta-analysis. Journal of Medical Virology, 93(2), 820-830. https://doi.org/10.1002/jmv.26508 DOI: https://doi.org/10.1002/jmv.26326
Gottlieb, M., Sansom, S., Frankenberger, C., Ward, E., & Hota, B. (2020). Clinical course and factors associated with hospitalization and critical illness among COVID-19 patients in Chicago. Illinois Academy of Emergency Medicine, 27(10), 963-973. https://doi.org/10.1016/j.ajem.2020.07.045 DOI: https://doi.org/10.1111/acem.14104
Huang, C., Wang, Y., Li, X., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5 DOI: https://doi.org/10.1016/S0140-6736(20)30183-5
Richardson, S., Hirsch, J. S., Narasimhan, M., et al. (2020). Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA, 323(20), 2052-2059. https://doi.org/10.1001/jama.2020.6775 DOI: https://doi.org/10.1001/jama.2020.6775
Ziehr, D. R., Alladina, J., Petri, C. R., et al. (2020). Respiratory pathophysiology of mechanically ventilated patients with COVID-19: A cohort study. American Journal of Respiratory and Critical Care Medicine, 201(12), 1560-1564. https://doi.org/10.1164/rccm.202005-1823OC DOI: https://doi.org/10.1164/rccm.202004-1163LE
Auld, S. C., Caridi-Scheible, M., Blum, J. M., et al. (2020). ICU and ventilator mortality among critically ill adults with coronavirus disease 2019. Critical Care Medicine, 48(9), e799-e804. https://doi.org/10.1097/CCM.0000000000004431 DOI: https://doi.org/10.1097/CCM.0000000000004457
Levin, A. T., Hanage, W. P., Owusu-Boaitey, N., et al. (2020). Assessing the age specificity of infection fatality rates for COVID-19: Systematic review, meta-analysis, and public policy implications. European Journal of Epidemiology, 35(12), 1123-1138. https://doi.org/10.1007/s10654-020-00698-1 DOI: https://doi.org/10.1007/s10654-020-00698-1
Cates, J., Lucero-Obusan, C., Dahl, R. M., et al. (2020). Risk for in-hospital complications associated with COVID-19 and influenza - Veterans Health Administration, United States, October 1, 2018-May 31, 2020. MMWR Morbidity and Mortality Weekly Report, 69(42), 1528-1534. https://doi.org/10.15585/mmwr.mm6942a3 DOI: https://doi.org/10.15585/mmwr.mm6942e3
Xie, Y., Bowe, B., Maddukuri, G., & Al-Aly, Z. (2020). Comparative evaluation of clinical manifestations and risk of death in patients admitted to hospital with COVID-19 and seasonal influenza: Cohort study. BMJ, 371, m4677. https://doi.org/10.1136/bmj.m4677 DOI: https://doi.org/10.1136/bmj.m4677
Lentz, S., Roginski, M. A., Montrief, T., et al. (2020). Initial emergency department mechanical ventilation strategies for COVID-19 hypoxemic respiratory failure and ARDS. American Journal of Emergency Medicine, 38(10), 2194-2202. https://doi.org/10.1016/j.ajem.2020.06.058 DOI: https://doi.org/10.1016/j.ajem.2020.06.082
Verma, A. A., Hora, T., Jung, H. Y., et al. (2021). Characteristics and outcomes of hospital admissions for COVID-19 and influenza in the Toronto area. Canadian Medical Association Journal, 193(12), E410-E418. https://doi.org/10.1503/cmaj.202527 DOI: https://doi.org/10.1503/cmaj.202795
Dennis, J. M., McGovern, A. P., Vollmer, S. J., & Mateen, B. A. (2021). Improving survival of critical care patients with coronavirus disease 2019 in England: A national cohort study, March to June 2020. Critical Care Medicine, 49(2), 209-214. https://doi.org/10.1097/CCM.0000000000004429 DOI: https://doi.org/10.1097/CCM.0000000000004747
Petrilli, C. M., Jones, S. A., Yang, J., et al. (2020). Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: Prospective cohort study. BMJ, 369, m1966. https://doi.org/10.1136/bmj.m1966 DOI: https://doi.org/10.1136/bmj.m1966
Williamson, E. J., Walker, A. J., Bhaskaran, K., et al. (2020). Factors associated with COVID-19-related death using OpenSAFELY. Nature, 584(7821), 430-436. https://doi.org/10.1038/s41586-020-2521-4 DOI: https://doi.org/10.1038/s41586-020-2521-4
Cunningham, J. W., Vaduganathan, M., Claggett, B. L., et al. (2020). Clinical outcomes in young US adults hospitalized with COVID-19. JAMA Internal Medicine, 181(3), 379-381. https://doi.org/10.1001/jamainternmed.2020.3874 DOI: https://doi.org/10.1001/jamainternmed.2020.5313
CDC COVID-19 Response Team. (2020). Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019 - United States, February 12–March 28, 2020. MMWR Morbidity and Mortality Weekly Report, 69(13), 382-386. https://doi.org/10.15585/mmwr.mm6913e2 DOI: https://doi.org/10.15585/mmwr.mm6913e2
Harrison, S. L., Fazio-Eynullayeva, E., Lane, D. A., et al. (2020). Comorbidities associated with mortality in 31,461 adults with COVID-19 in the United States: A federated electronic medical record analysis. PLoS Medicine, 17(9), e1003321. https://doi.org/10.1371/journal.pmed.1003321 DOI: https://doi.org/10.1371/journal.pmed.1003321
Anderson, M. R., Geleris, J., Anderson, D. R., et al. (2020). Body mass index and risk for intubation or death in SARS-CoV-2 infection: A retrospective cohort study. Annals of Internal Medicine, 173(10), 782-790. https://doi.org/10.7326/M20-3214 DOI: https://doi.org/10.7326/M20-3214
Tartof, S. Y., Qian, L., Hong, V., et al. (2020). Obesity and mortality among patients diagnosed with COVID-19: Results from an integrated health care organization. Annals of Internal Medicine, 173(10), 773-781. https://doi.org/10.7326/M20-3742 DOI: https://doi.org/10.7326/M20-3742
Alvarez-Garcia, J., Lee, S., Gupta, A., et al. (2020). Prognostic impact of prior heart failure in patients hospitalized with COVID-19. Journal of the American College of Cardiology, 76(20), 2334-2348. https://doi.org/10.1016/j.jacc.2020.08.795 DOI: https://doi.org/10.1016/j.jacc.2020.09.549
Fisman, D., & Tuite, A. (2021). Progressive increase in virulence of novel SARS-CoV-2 variants in Ontario. Canada medRxiv Preprint. https://doi.org/10.1101/2021.07.05.21260050 DOI: https://doi.org/10.1101/2021.07.05.21260050
Peyrony, O., Marbeuf-Gueye, C., Truong, V., et al. (2020). Accuracy of emergency department clinical findings for diagnosis of coronavirus disease 2019. Annals of Emergency Medicine, 76(4), 405-412. https://doi.org/10.1016/j.annemergmed.2020.05.010 DOI: https://doi.org/10.1016/j.annemergmed.2020.05.022
Kornitzer, J., Johnson, J., Yang, M., et al. (2021). A systematic review of characteristics associated with COVID-19 in children with typical presentation and with multisystem inflammatory syndrome. International Journal of Environmental Research and Public Health, 18(16), 8269. https://doi.org/10.3390/ijerph18168269 DOI: https://doi.org/10.3390/ijerph18168269
Carpenter, C. R., Mudd, P. A., West, C. P., et al. (2020). Diagnosing COVID-19 in the emergency department: A scoping review of clinical examinations, laboratory tests, imaging accuracy, and biases. Academic Emergency Medicine, 27(8), 653-670. https://doi.org/10.1111/acem.14096 DOI: https://doi.org/10.1111/acem.14048
Struyf, T., Deeks, J. J., Dinnes, J., et al. (2020). Cochrane COVID-19 Diagnostic Test Accuracy Group. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19 disease. Cochrane Database of Systematic Reviews, 7(7), CD013665. https://doi.org/10.1002/14651858.CD013665 DOI: https://doi.org/10.1002/14651858.CD013665
Chua, A. J., Charn, T. C., Chan, E. C., & Loh, J. (2020). Acute olfactory loss is specific for COVID-19 at the emergency department. Annals of Emergency Medicine, 76(4), 550-551. https://doi.org/10.1016/j.annemergmed.2020.07.023 DOI: https://doi.org/10.1016/j.annemergmed.2020.05.015
Bielecki, M., Crameri, G. A. G., Schlagenhauf, P., et al. (2020). Body temperature screening to identify SARS-CoV-2 infected young adult travellers is ineffective. Travel Medicine and Infectious Disease, 37, 101832. https://doi.org/10.1016/j.tmaid.2020.101832 DOI: https://doi.org/10.1016/j.tmaid.2020.101832
Feng, C., Wang, L., Chen, X., et al. (2021). A novel artificial intelligence-assisted triage tool to aid in the diagnosis of suspected COVID-19 pneumonia cases in fever clinics. Annals of Translational Medicine, 9(3), 201. https://doi.org/10.21037/atm.2020.04.36 DOI: https://doi.org/10.21037/atm-20-3073
Rawson, T. M., Moore, L. S. P., Zhu, N., et al. (2020). Bacterial and fungal coinfection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. Clinical Infectious Diseases, 71(9), 2459-2468. https://doi.org/10.1093/cid/ciaa530 DOI: https://doi.org/10.1093/cid/ciaa530
Zhou, P., Liu, Z., Chen, Y., et al. (2020). Bacterial and fungal infections in COVID-19 patients: A matter of concern. Infection Control & Hospital Epidemiology, 41(9), 1124-1125. https://doi.org/10.1017/ice.2020.219 DOI: https://doi.org/10.1017/ice.2020.156
Zhu, X., Ge, Y., Wu, T., et al. (2020). Co-infection with respiratory pathogens among COVID-2019 cases. Virus Research, 285, 198005. https://doi.org/10.1016/j.virusres.2020.198005 DOI: https://doi.org/10.1016/j.virusres.2020.198005
Kim, D., Quinn, J., Pinsky, B., Shah, N. H., & Brown, I. (2020). Rates of co-infection between SARS-CoV-2 and other respiratory pathogens. JAMA, 323(20), 2085-2086. https://doi.org/10.1001/jama.2020.6266 DOI: https://doi.org/10.1001/jama.2020.6266
Lai, C. C., & Yu, W. L. (2021). COVID-19 associated with pulmonary aspergillosis: A literature review. Journal of Microbiology, Immunology, and Infection, 54(1), 46-53. https://doi.org/10.1016/j.jmii.2020.09.004 DOI: https://doi.org/10.1016/j.jmii.2020.09.004
Ismaiel, W. F., Abdelazim, M. H., Eldsoky, I., et al. (2021). The impact of COVID-19 outbreak on the incidence of acute invasive fungal rhinosinusitis [published online ahead of print, 2021 May 14]. American Journal of Otolaryngology, 42(6), 103080. https://doi.org/10.1016/j.amjoto.2021.103080 DOI: https://doi.org/10.1016/j.amjoto.2021.103080
Honavar, S. G. (2021). Code mucor: Guidelines for the diagnosis, staging, and management of rhino-orbito-cerebral mucormycosis in the setting of COVID-19. Indian Journal of Ophthalmology, 69(6), 1361-1365. https://doi.org/10.4103/ijo.IJO_2890_20 DOI: https://doi.org/10.4103/ijo.IJO_1165_21
El-Kholy, N. A., El-Fattah, A. M. A., & Khafagy, Y. W. (2021). Invasive fungal sinusitis in post COVID-19 patients: A new clinical entity [published online ahead of print, 2021 May 19]. Laryngoscope. https://doi.org/10.1002/lary.29632 DOI: https://doi.org/10.1002/lary.29632
Sen, M., Lahae, S., Lahane, T. P., et al. (2021). Mucor in a viral land: A tale of two pathogens. Indian Journal of Ophthalmology, 69(2), 244-252. https://doi.org/10.4103/ijo.IJO_540_20 DOI: https://doi.org/10.4103/ijo.IJO_3774_20
Long, B., Brady, W. J., Koyfman, A., & Gottlieb, M. (2020). Cardiovascular complications in COVID-19. American Journal of Emergency Medicine, 38(7), 1504-1507. https://doi.org/10.1016/j.ajem.2020.04.044 DOI: https://doi.org/10.1016/j.ajem.2020.04.048
Guo, T., Fan, Y., Chen, M., et al. (2020). Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19) [published correction appears in JAMA Cardiology. 2020 Jul 1;5(7):848]. JAMA Cardiology, 5(7), 811-818. https://doi.org/10.1001/jamacardio.2020.1017 DOI: https://doi.org/10.1001/jamacardio.2020.1017
Madjid, M., Safavi-Naeini, P., Solomon, S. D., & Vardeny, O. (2020). Potential effects of coronaviruses on the cardiovascular system: A review. JAMA Cardiology, 5(7), 831-840. https://doi.org/10.1001/jamacardio.2020.1285 DOI: https://doi.org/10.1001/jamacardio.2020.1286
Lazzerini, P. E., Boutjdir, M., & Capecchi, P. L. (2020). COVID-19, arrhythmic risk, and inflammation: Mind the gap! Circulation, 142(1), 7-9. https://doi.org/10.1161/CIRCULATIONAHA.120.048437 DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.047293
Ranard, L. S., Fried, J. A., Abdalla, S., et al. (2020). Approach to acute cardiovascular complications in COVID-19 infection. Circulation: Heart Failure, 13(7), e007220. https://doi.org/10.1161/CIRCHEARTFAILURE.120.007220 DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.120.007220
Mahmud, E., Dauerman, H. L., Welt, F. G. P., et al. (2020). Management of acute myocardial infarction during the COVID-19 pandemic: A position statement from the Society for Cardiovascular Angiography and Interventions (SCAI), the American College of Cardiology (ACC), and the American College of Emergency Physicians (ACEP). Journal of the American College of Cardiology, 76(11), 1375-1384. https://doi.org/10.1016/j.jacc.2020.05.089 DOI: https://doi.org/10.1002/ccd.28946
Driggin, E., Madhavan, M. V., Bikdeli, B., et al. (2020). Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. Journal of the American College of Cardiology, 75(18), 2352-2371. https://doi.org/10.1016/j.jacc.2020.03.031 DOI: https://doi.org/10.1016/j.jacc.2020.03.031
Stefanini, G. G., Montorfano, M., Trabattoni, D., et al. (2020). ST-elevation myocardial infarction in patients with COVID-19: Clinical and angiographic outcomes. Circulation, 141(25), 2113-2116. https://doi.org/10.1161/CIRCULATIONAHA.120.049382 DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.047525
Szekely, Y., Lichter, Y., Taieb, P., et al. (2020). Spectrum of cardiac manifestations in COVID-19: A systematic echocardiographic study. Circulation, 142(4), 342-353. https://doi.org/10.1161/CIRCULATIONAHA.120.047971 DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.047971
Argulian, E., Sud, K., Vogel, B., et al. (2020). Right ventricular dilation in hospitalized patients with COVID-19 infection. JACC: Cardiovascular Imaging, 13(11), 2459-2461. https://doi.org/10.1016/j.jcmg.2020.07.017 DOI: https://doi.org/10.1016/j.jcmg.2020.05.010
Puntmann, V. O., Carerj, M. L., Wieters, I., et al. (2020). Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19) [published correction appears in JAMA Cardiology. 2020 Nov 1;5(11):1308]. JAMA Cardiology, 5(11), 1265-1273. https://doi.org/10.1001/jamacardio.2020.3557 DOI: https://doi.org/10.1001/jamacardio.2020.3557
Huang, L., Zhao, P., Tang, D., et al. (2020). Cardiac involvement in patients recovered from COVID-2019 identified using magnetic resonance imaging. JACC: Cardiovascular Imaging, 13(11), 2330-2339. https://doi.org/10.1016/j.jcmg.2020.05.004 DOI: https://doi.org/10.1016/j.jcmg.2020.05.004
Rajpal, S., Tong, M. S., Borchers, J., et al. (2021). Cardiovascular magnetic resonance findings in competitive athletes recovering from COVID-19 infection [published correction appears in JAMA Cardiology. 2021 Jan 1;6(1):123]. JAMA Cardiology, 6(1), 116-118. https://doi.org/10.1001/jamacardio.2020.7386 DOI: https://doi.org/10.1001/jamacardio.2020.4916
Liotta, E. M., Batra, A., Clark, J. R., et al. (2020). Frequent neurologic manifestations and encephalopathy-associated morbidity in Covid-19 patients. Annals of Clinical and Translational Neurology, 7(11), 2221-2230. https://doi.org/10.1002/acn3.51408 DOI: https://doi.org/10.1002/acn3.51210
Lechien, J. R., Chiesa-Estomba, C. M., De Siati, D. R., et al. (2020). Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): A multicenter European study. European Archives of Oto-Rhino-Laryngology, 277(8), 2251-2261. https://doi.org/10.1007/s00405-020-05965-1 DOI: https://doi.org/10.1007/s00405-020-06024-5
Beltrán-Corbellini, Á., Chico-García, J. L., Martínez-Poles, J., et al. (2020). Acute-onset smell and taste disorders in the context of COVID-19: A pilot multicentre polymerase chain reaction based case-control study. European Journal of Neurology, 27(9), 1738-1741. https://doi.org/10.1111/ene.14273 DOI: https://doi.org/10.1111/ene.14359
Tong, J. Y., Wong, A., Zhu, D., et al. (2020). The prevalence of olfactory and gustatory dysfunction in COVID-19 patients: A systematic review and meta-analysis. Otolaryngology–Head and Neck Surgery, 163(1), 3-11. https://doi.org/10.1177/0194599820926473 DOI: https://doi.org/10.1177/0194599820926473
Frontera, J. A., Sabadia, S., Lalchan, R., et al. (2021). A prospective study of neurologic disorders in hospitalized patients with COVID-19 in New York City. Neurology, 96(4), e575-e586. https://doi.org/10.1212/WNL.0000000000011251 DOI: https://doi.org/10.1212/WNL.0000000000011609
Pun, B. T., Badenes, R., Heras La Calle, G., et al. (2021). COVID-19 Intensive Care International Study Group. Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): A multicentre cohort study. Lancet Respiratory Medicine, 9(3), 239-250. https://doi.org/10.1016/S2213-2600(20)30558-8
Toscano, G., Palmerini, F., Ravaglia, S., et al. (2020). Guillain-Barré syndrome associated with SARS-CoV-2. New England Journal of Medicine, 382(26), 2574-2576. https://doi.org/10.1056/NEJMc2009191 DOI: https://doi.org/10.1056/NEJMc2009191
Mao, L., Wang, M., Chen, S., et al. (2020). Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: A retrospective case series study. medRxiv. https://doi.org/10.1101/2020.02.22.20026500 DOI: https://doi.org/10.1101/2020.02.22.20026500
Oxley, T. J., Mocco, J., Majidi, S., et al. (2020). Large-vessel stroke as a presenting feature of Covid-19 in the young. New England Journal of Medicine, 382(20), e60. https://doi.org/10.1056/NEJMc2009787 DOI: https://doi.org/10.1056/NEJMc2009787
American Heart Association/American Stroke Association Stroke Council Leadership. (2020). Temporary emergency guidance to US stroke centers during the coronavirus disease 2019 (COVID-19) pandemic. Stroke, 51(6), 1910-1912. https://doi.org/10.1161/STROKEAHA.120.030023 DOI: https://doi.org/10.1161/STROKEAHA.120.030023
Al-Mufti, F., Amuluru, K., Sahni, R., et al. (2021). Cerebral venous thrombosis in COVID-19: A New York Metropolitan Cohort Study. AJNR American Journal of Neuroradiology, 42(7), 1196-1200. https://doi.org/10.3174/ajnr.A7078 DOI: https://doi.org/10.3174/ajnr.A7134
Tu, T. M., Goh, C., Tan, Y. K., et al. (2020). Cerebral venous thrombosis in patients with COVID-19 infection: A case series and systematic review. Journal of Stroke and Cerebrovascular Diseases, 29(12), 105379. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105379 DOI: https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105379
Taquet, M., Geddes, J. R., Husain, M., et al. (2021). Six-month neurological and psychiatric outcomes in 236,379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry, 8(5), 416-427. https://doi.org/10.1016/S2215-0366(21)00084-5 DOI: https://doi.org/10.1016/S2215-0366(21)00084-5
Silva, F. A. F. D., Brito, B. B., Santos, M. L. C., et al. (2020). COVID-19 gastrointestinal manifestations: A systematic review. Revista da Sociedade Brasileira de Medicina Tropical, 53. https://doi.org/10.1590/0037-8682-0420-2020 DOI: https://doi.org/10.1590/0037-8682-0714-2020
Tian, Y., Rong, L., Nian, W., & He, Y. (2020). Review article: Gastrointestinal features in COVID-19 and the possibility of faecal transmission. Alimentary Pharmacology & Therapeutics, 51(9), 843-851. https://doi.org/10.1111/apt.15731 DOI: https://doi.org/10.1111/apt.15731
Kaafarani, H. M. A., El Moheb, M., Hwabejire, J. O., et al. (2020). Gastrointestinal complications in critically ill patients with COVID-19. Annals of Surgery, 272(2), e61-e62. https://doi.org/10.1097/SLA.0000000000003925 DOI: https://doi.org/10.1097/SLA.0000000000004004
Recalcati, S. (2020). Cutaneous manifestations in COVID-19: A first perspective. Journal of the European Academy of Dermatology and Venereology, 34(5), e212-e213. https://doi.org/10.1111/jdv.16411 DOI: https://doi.org/10.1111/jdv.16387
Gottlieb, M., & Long, B. (2020). Dermatologic manifestations and complications of COVID-19. American Journal of Emergency Medicine, 38(9), 1715-1721. https://doi.org/10.1016/j.ajem.2020.05.045 DOI: https://doi.org/10.1016/j.ajem.2020.06.011
Tammaro, A., Adebanjo, G. A. R., Parisella, F. R., et al. (2020). Cutaneous manifestations in COVID-19: The experiences of Barcelona and Rome. Journal of the European Academy of Dermatology and Venereology, 34(7), e306-e307. https://doi.org/10.1111/jdv.16514 DOI: https://doi.org/10.1111/jdv.16530
Li, H., Zhao, Y., Zhou, L., & Hu, J. (2020). Cutaneous, skin histopathological manifestations and relationship to COVID-19 infection patients. Dermatology Therapy, 33(6), e14157. https://doi.org/10.1111/dth.14157 DOI: https://doi.org/10.1111/dth.14157
Fernandez-Nieto, D., Jimenez-Cauhe, J., Suarez-Valle, A., et al. (2020). Characterization of acute acral skin lesions in nonhospitalized patients: A case series of 132 patients during the COVID-19 outbreak. Journal of the American Academy of Dermatology, 83(1), e61-e63. https://doi.org/10.1016/j.jaad.2020.04.046 DOI: https://doi.org/10.1016/j.jaad.2020.04.093
Bikdeli, B., Madhavan, M. V., Jimenez, D., et al. (2020). COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. Journal of the American College of Cardiology, 75(23), 2950-2973. https://doi.org/10.1016/j.jacc.2020.04.039 DOI: https://doi.org/10.1016/j.jacc.2020.04.031
McGonagle, D., O’Donnell, J. S., Sharif, K., Emery, P., & Bridgewood, C. (2020). Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatology, 2(7), e437-e445. https://doi.org/10.1016/S2665-9913(20)30121-1 DOI: https://doi.org/10.1016/S2665-9913(20)30121-1
Cui, S., Chen, S., Li, X., Liu, S., & Wang, F. (2020). Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis, 18(6), 1421-1424. https://doi.org/10.1111/jth.14830 DOI: https://doi.org/10.1111/jth.14830
Klok, F. A. H., Kruip, M. J. H. A., van der Meer, N. J. M., et al. (2020). Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Research, 191, 145-147. https://doi.org/10.1016/j.thromres.2020.03.013 DOI: https://doi.org/10.1016/j.thromres.2020.04.013
Wichmann, D., Sperhake, J. P., Lütgehetmann, M., et al. (2020). Autopsy findings and venous thromboembolism in patients with COVID-19: A prospective cohort study. Annals of Internal Medicine, 173(4), 268-277. DOI: https://doi.org/10.7326/M20-2003
Al-Samkari, H., Karp Leaf, R. S., Dzik, W. H., et al. (2020). COVID-19 and coagulation: Bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood, 136(4), 489-500. DOI: https://doi.org/10.1182/blood.2020006520
Bilaloglu, S., Aphinyanaphongs, Y., Jones, S., et al. (2020). Thrombosis in hospitalized patients with COVID-19 in a New York City health system. JAMA, 324(8), 799-801. https://doi.org/10.1001/jama.2020.13372 DOI: https://doi.org/10.1001/jama.2020.13372
Jenner, W. J., Kanji, R., Mirsadraee, S., et al. (2021). Thrombotic complications in 2928 patients with COVID-19 treated in intensive care: A systematic review. Journal of Thrombosis and Thrombolysis, 51(3), 595-607. DOI: https://doi.org/10.1007/s11239-021-02394-7
Shah, A., Donovan, K., McHugh, A., et al. (2020). Thrombotic and haemorrhagic complications in critically ill patients with COVID-19: A multicentre observational study. Critical Care, 24(1), 561. https://doi.org/10.1186/s13054-020-03260-3 DOI: https://doi.org/10.1186/s13054-020-03260-3
Miró, Ò., Jiménez, S., Mebazaa, A., et al. (2021). Pulmonary embolism in patients with COVID-19: Incidence, risk factors, clinical characteristics, and outcome. European Heart Journal, 42(33), 3127-3142. DOI: https://doi.org/10.1093/eurheartj/ehab314
Freund, Y., Drogrey, M., Miró, Ò., et al. (2020). Association between pulmonary embolism and COVID-19 in emergency department patients undergoing computed tomography pulmonary angiogram: The PEPCOV International Retrospective Study. Academic Emergency Medicine, 27(9), 811-820. DOI: https://doi.org/10.1111/acem.14096
Yamamoto, K., & Ohmagari, N. (2021). Microbiological testing for coronavirus disease 2019. JMA Journal, 4(2), 67-75. DOI: https://doi.org/10.31662/jmaj.2021-0012
Hanson, K. E., Caliendo, A. M., Arias, C. A., et al. (2021). The Infectious Diseases Society of America guidelines on the diagnosis of COVID-19: Molecular diagnostic testing. Clinical Infectious Diseases. https://doi.org/10.1093/cid/ciab048 DOI: https://doi.org/10.1093/cid/ciab048
Yohe, S. (2021). How good are COVID-19 diagnostic PCR tests? College of American Pathologists. Accessed May 7, 2021.
Li, Y., Yao, L., Li, J., et al. (2020). Stability issues of RT-PCR testing of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19. Journal of Medical Virology, 92(7), 903-908. DOI: https://doi.org/10.1002/jmv.25786
Yamayoshi, S., Sakai-Tagawa, Y., Koga, M., et al. (2020). Comparison of rapid antigen tests for COVID-19. Viruses, 12(12), 1420. DOI: https://doi.org/10.3390/v12121420
Kucirka, L. M., Lauer, S. A., Laeyendecker, O., Boon, D., & Lessler, J. (2020). Variation in false-negative rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure. Annals of Internal Medicine, 173(4), 262-267. DOI: https://doi.org/10.7326/M20-1495
Khandker, S. S., Nik Hashim, N. H. H., Deris, Z. Z., Shueb, R. H., & Islam, M. A. (2021). Diagnostic accuracy of rapid antigen test kits for detecting SARS-CoV-2: A systematic review and meta-analysis of 17,171 suspected COVID-19 patients. Journal of Clinical Medicine, 10(16), 3493. DOI: https://doi.org/10.3390/jcm10163493
Hanson, K. E., Altayar, O., Caliendo, A. M., et al. (2021). The Infectious Diseases Society of America guidelines on the diagnosis of COVID-19: Antigen testing. Clinical Infectious Diseases. https://doi.org/10.1093/cid/ciab557 DOI: https://doi.org/10.1093/cid/ciab557
Strömer, A., Rose, R., Schäfer, M., et al. (2020). Performance of a point-of-care test for the rapid detection of SARS-CoV-2 antigen. Microorganisms, 9(1), 58. DOI: https://doi.org/10.3390/microorganisms9010058
Hayer, J., Kasapic, D., & Zemmrich, C. (2021). Real-world clinical performance of commercial SARS-CoV-2 rapid antigen tests in suspected COVID-19: A systematic meta-analysis of available data as of November 20, 2020. International Journal of Infectious Diseases, 108, 592-602. DOI: https://doi.org/10.1016/j.ijid.2021.05.029
Dinnes, J., Deeks, J. J., Berhane, S., et al. (2021). Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database of Systematic Reviews, 3(3), CD013705. DOI: https://doi.org/10.1002/14651858.CD013705
Brümmer, L. E., Katzenschlager, S., Gaeddert, M., et al. (2021). Accuracy of novel antigen rapid diagnostics for SARS-CoV-2: A living systematic review and meta-analysis. PLoS Medicine, 18(8), Article e1003735. DOI: https://doi.org/10.1371/journal.pmed.1003735
Toptan, T., Eckermann, L., Pfeiffer, A. E., et al. (2021). Evaluation of a SARS-CoV-2 rapid antigen test: Potential to help reduce community spread? Journal of Clinical Virology, 135, Article 104713. DOI: https://doi.org/10.1016/j.jcv.2020.104713
Deerain, J., Druce, J., Tran, T., et al. (2021). Assessment of the analytical sensitivity of ten lateral flow devices against the SARS-CoV-2 omicron variant. Journal of Clinical Microbiology. https://doi.org/10.1128/jcm.02479-21 DOI: https://doi.org/10.1128/jcm.02479-21
Ferré, V. M., Peiffer-Smadja, N., Visseaux, B., et al. (2021). Omicron SARS-CoV-2 variant: What we know and what we don’t. Anaesthesia, Critical Care & Pain Medicine, 41(1), Article 100998. https://doi.org/10.1016/j.accpm.2021.100998 DOI: https://doi.org/10.1016/j.accpm.2021.100998
Published
How to Cite
Issue
Section
Copyright (c) 2023 International journal of health sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.