Advancements in nanomedicine: Targeted drug delivery systems for cancer treatment

https://doi.org/10.53730/ijhs.v7nS1.15291

Authors

  • Abdulrahman Amer Alajmi ‏‏National Guard Health Affairs
  • Sanytan Ghazy Al Otaibi ‏National Guard Health Affairs
  • Abdullah Hzam Ali Alzubidi National Guard Health Affairs
  • Ahmad Asri Awad Alanazi National Guard Health Affairs
  • ‏Abdullah Saleh Abdullah Almorshed National Guard Health Affairs
  • Abdullah Abdulrahman Mohammed Alrbian National Guard Health Affairs
  • Abdullah Hzam Ali Alzubidi National Guard Health Affairs

Keywords:

Nanomedicine, cancer treatment, targeted drug delivery, clinical applications, drug formulations

Abstract

Background: Nanomedicine has emerged as a revolutionary approach in cancer treatment, enabling targeted drug delivery that enhances therapeutic efficacy while minimizing systemic toxicity. The rapid advancement in nanotechnology has led to the development of sophisticated drug delivery systems that optimize the pharmacokinetics and pharmacodynamics of anticancer agents. Aim: This article aims to review the progress in nanomedicine, focusing on targeted drug delivery systems developed for cancer treatment, highlighting their mechanisms, types, and clinically approved formulations. Methods: A comprehensive literature review was conducted to collate data on the history, mechanisms of action, types of nanomedicines, and their clinical applications in cancer therapy. Key databases were searched for relevant studies, clinical trials, and regulatory approvals of nanomedicines. Results: The review reveals a significant evolution in the field of nanomedicine since its inception, with various nanocarriers, including liposomes, dendrimers, and polymeric nanoparticles, being developed to enhance drug solubility and improve therapeutic targeting. Clinically approved formulations such as Doxil® and Abraxane® exemplify the successful integration of nanotechnology into oncology, demonstrating improved patient outcomes and reduced side effects. Conclusion: Advancements in nanomedicine have paved the way for innovative cancer therapies that leverage targeted drug delivery systems to improve treatment efficacy and safety. 

Downloads

Download data is not yet available.

References

Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. DOI: https://doi.org/10.3322/caac.21660

Debela, D.T.; Muzazu, S.G.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021, 9, 20503121211034366. DOI: https://doi.org/10.1177/20503121211034366

Altun, İ.; Sonkaya, A. The Most Common Side Effects Experienced by Patients Were Receiving First Cycle of Chemotherapy. Iran. J. Public Health 2018, 47, 1218–1219

Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release Off. J. Control. Release Soc. 2010, 148, 135–146. DOI: https://doi.org/10.1016/j.jconrel.2010.08.027

Din, F.U.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 2017, 12, 7291–7309. DOI: https://doi.org/10.2147/IJN.S146315

Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46 Pt 1, 6387–6392.

Salvioni, L.; Rizzuto, M.A.; Bertolini, J.A.; Pandolfi, L.; Colombo, M.; Prosperi, D. Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope. Cancers 2019, 11, 1855 DOI: https://doi.org/10.3390/cancers11121855

Wang, S.; Cheng, K.; Chen, K.; Xu, C.; Ma, P.; Dang, G.; Yang, Y.; Lei, Q.; Huang, H.; Yu, Y.; et al. Nanoparticle-based medicines in clinical cancer therapy. Nano Today 2022, 45, 101512. DOI: https://doi.org/10.1016/j.nantod.2022.101512

Lancet, J.E.; Uy, G.L.; Cortes, J.E.; Newell, L.F.; Lin, T.L.; Ritchie, E.K.; Stuart, R.K.; Strickland, S.A.; Hogge, D.; Solomon, S.R.; et al. CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients With Newly Diagnosed Secondary Acute Myeloid Leukemia. J. Clin. Oncol. 2018, 36, 2684–2692. DOI: https://doi.org/10.1200/JCO.2017.77.6112

Prasanna, R.; Bunger, D.; Khan, M.A. Efficacy and safety of DoceAqualip in a patient with locally advanced cervical cancer: A case report. Mol. Clin. Oncol. 2018, 8, 296–299. DOI: https://doi.org/10.3892/mco.2017.1519

Sindhwani, S.; Syed, A.M.; Ngai, J.; Kingston, B.R.; Maiorino, L.; Rothschild, J.; MacMillan, P.; Zhang, Y.; Rajesh, N.U.; Hoang, T.; et al. The entry of nanoparticles into solid tumours. Nat. Mater. 2020, 19, 566–575. DOI: https://doi.org/10.1038/s41563-019-0566-2

El Hallal, R.; Lyu, N.; Wang, Y. Effect of Cetuximab-Conjugated Gold Nanoparticles on the Cytotoxicity and Phenotypic Evolution of Colorectal Cancer Cells. Molecules 2021, 26, 567. DOI: https://doi.org/10.3390/molecules26030567

Saraf, S.; Jain, A.; Tiwari, A.; Verma, A.; Panda, P.K.; Jain, S.K. Advances in liposomal drug delivery to cancer: An overview. J. Drug Deliv. Sci. Technol. 2020, 56, 101549. DOI: https://doi.org/10.1016/j.jddst.2020.101549

Alavi, M.; Hamidi, M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther. 2019, 34, 20180032 DOI: https://doi.org/10.1515/dmpt-2018-0032

Mishra, P.; Nayak, B.; Dey, R.K. PEGylation in anti-cancer therapy: An overview. Asian J. Pharm. Sci. 2016, 11, 337–348. DOI: https://doi.org/10.1016/j.ajps.2015.08.011

S. Mohan Bhagyaraj and O. S. Oluwafemi, Nanotechnology: The Science of the Invisible, in Synthesis of Inorganic Nanomaterials [Internet], Elsevier, 2018 [cited 2022 Oct 7], p. 1–18, available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081019757000014 DOI: https://doi.org/10.1016/B978-0-08-101975-7.00001-4

D. Klemm, E. D. Cranston, D. Fischer, M. Gama, S. A. Kedzior and D. Kralisch, et al., Nanocellulose as a natural source for groundbreaking applications in materials science: today's state, Mater. Today, 2018, 21(7), 720–748 DOI: https://doi.org/10.1016/j.mattod.2018.02.001

O. P. Bodunde, O. M. Ikumapayi, E. T. Akinlabi, B. I. Oladapo, A. O. M. Adeoye and S. O. Fatoba, A futuristic insight into a “nano-doctor”: a clinical review on medical diagnosis and devices using nanotechnology, Mater. Today Proc., 2021, 44, 1144–1153 DOI: https://doi.org/10.1016/j.matpr.2020.11.232

G. Venkatraman, S. Ramya, G. Akila and S. Kumar, et al., Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications, Int. J. Neurol., 2012, 1043 DOI: https://doi.org/10.2147/IJN.S25182

M. Chamundeeswari, J. Jeslin and M. L. Verma, Nanocarriers for drug delivery applications, Environ. Chem. Lett., 2019, 17(2), 849–865 DOI: https://doi.org/10.1007/s10311-018-00841-1

S. Senapati, A. K. Mahanta, S. Kumar and P. Maiti, Controlled drug delivery vehicles for cancer treatment and their performance, Signal Transduction Targeted Ther., 2018, 3(1), 7 DOI: https://doi.org/10.1038/s41392-017-0004-3

S. Quader and K. Kataoka, Nanomaterial-Enabled Cancer Therapy, Mol. Ther., 2017, 25(7), 1501–1513 DOI: https://doi.org/10.1016/j.ymthe.2017.04.026

S. Alshehri, S. S. Imam, M. Rizwanullah, S. Akhter, W. Mahdi and M. Kazi, et al., Progress of Cancer Nanotechnology as Diagnostics, Therapeutics, and Theranostics Nanomedicine: Preclinical Promise and Translational Challenges, Pharmaceutics, 2020, 13(1), 24 DOI: https://doi.org/10.3390/pharmaceutics13010024

M. Rai and A. Ingle, Role of nanotechnology in agriculture with special reference to management of insect pests, Appl. Microbiol. Biotechnol., 2012, 94(2), 287–293 DOI: https://doi.org/10.1007/s00253-012-3969-4

S. Dean, G. Mansoori and T. Fauzi Soelaiman, Nanotechnology — An Introduction for the Standards Community, J. ASTM Int., 2005, 2(6), 13110 DOI: https://doi.org/10.1520/JAI13110

Y. Dang, Nanoparticle-based drug delivery systems for cancer therapy, 2020, vol. 10 DOI: https://doi.org/10.1016/j.smaim.2020.04.001

J. W. Goodwin, J. Hearn, C. C. Ho and R. H. Ottewill, The preparation and characterisation of polymer latices formed in the absence of surface active agents, Br. Polym. J., 1973, 5(5), 347–362 DOI: https://doi.org/10.1002/pi.4980050503

S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani and F. Rizzolio, The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine, Molecules, 2019, 25(1), 112 DOI: https://doi.org/10.3390/molecules25010112

J. K. Patra, G. Das, L. F. Fraceto, E. V. R. Campos, M. del P. Rodriguez-Torres and L. S. Acosta-Torres, et al., Nano based drug delivery systems: recent developments and future prospects, J. Nanobiotechnol., 2018, 16(1), 71 DOI: https://doi.org/10.1186/s12951-018-0392-8

D. C. Wimalachandra, Y. Li, J. Liu, S. Shikha, J. Zhang and Y. C. Lim, et al., Microfluidic-Based Immunomodulation of Immune Cells Using Upconversion Nanoparticles in Simulated Blood Vessel–Tumor System, ACS Appl. Mater. Interfaces, 2019, 11(41), 37513–37523 DOI: https://doi.org/10.1021/acsami.9b15178

D. Vllasaliu, M. Thanou, S. Stolnik and R. Fowler, Recent advances in oral delivery of biologics: nanomedicine and physical modes of delivery, Expet Opin. Drug Deliv., 2018, 15(8), 759–770 DOI: https://doi.org/10.1080/17425247.2018.1504017

S. Haque, S. Md, J. K. Sahni, J. Ali and S. Baboota, Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression, J. Psychiatr. Res., 2014, 48(1), 1–12 DOI: https://doi.org/10.1016/j.jpsychires.2013.10.011

X. Tong, Z. Wang, X. Sun, J. Song, O. Jacobson and G. Niu, et al., Size Dependent Kinetics of Gold Nanorods in EPR Mediated Tumor Delivery, Theranostics, 2016, 6(12), 2039–2051 DOI: https://doi.org/10.7150/thno.17098

M. S. Kim, M. J. Haney, Y. Zhao, D. Yuan, I. Deygen and N. L. Klyachko, et al., Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations, Nanomedicine, 2018, 14(1), 195–204 DOI: https://doi.org/10.1016/j.nano.2017.09.011

X. Gao, N. Ran, X. Dong, B. Zuo, R. Yang and Q. Zhou, et al., Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy, Sci. Transl. Med., 2018, 10(444), eaat0195 DOI: https://doi.org/10.1126/scitranslmed.aat0195

H. Kobayashi, K. Ebisawa, M. Kambe, T. Kasai, H. Suga, K. Nakamura, et al., Effects of exosomes derived from the induced pluripotent stem cells on skin wound healing [Internet], Nagoya University Graduate School of Medicine, School of Medicine, 2018 [cited 2022 Sep 21]. Available from: https://doi.org/10.18999/nagjms.80.2.141

Kalani, P. Chaturvedi, P. K. Kamat, C. Maldonado, P. Bauer and I. G. Joshua, et al., Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury, Int. J. Biochem. Cell Biol., 2016, 79, 360–369 DOI: https://doi.org/10.1016/j.biocel.2016.09.002

Layek, B.; Gidwani, B.; Tiwari, S.; Joshi, V.; Jain, V.; Vyas, A. Recent Advances in Lipid-based Nanodrug Delivery Systems in Cancer Therapy. Curr. Pharm. Des. 2020, 26, 3218–3233. DOI: https://doi.org/10.2174/1381612826666200622133407

Trivedi, R.; Arora, S.; Lamptey, R.; Chaulagain, B.; Singh, J.; Layek, B. A Summarized View of Lipid, Polyplex, Inorganic, and Carbon-Based Nanotherapeutics for Hepatocellular Carcinoma Treatment. In Nanotherapeutics for the Treatment of Hepatocellular Carcinoma; Bentham Science Publishers: Sharjah, United Arab Emirates, 2021; pp. 248–279 DOI: https://doi.org/10.2174/9789815039740122010008

Rommasi, F.; Esfandiari, N. Liposomal Nanomedicine: Applications for Drug Delivery in Cancer Therapy. Nanoscale Res. Lett. 2021, 16, 95.

Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015, 6, 286. DOI: https://doi.org/10.3389/fphar.2015.00286

Nakhaei, P.; Margiana, R.; Bokov, D.O.; Abdelbasset, W.K.; Jadidi Kouhbanani, M.A.; Varma, R.S.; Marofi, F.; Jarahian, M.; Beheshtkhoo, N. Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Front. Bioeng. Biotechnol. 2021, 9, 705886.

Mukherjee, B.; Patra, B.; Layek, B.; Mukherjee, A. Sustained release of acyclovir from nano-liposomes and nano-niosomes: An in vitro study. Int. J. Nanomed. 2007, 2, 213–225.

Moosavian, S.A.; Bianconi, V.; Pirro, M.; Sahebkar, A. Challenges and pitfalls in the development of liposomal delivery systems for cancer therapy. Semin. Cancer Biol. 2021, 69, 337–348. DOI: https://doi.org/10.1016/j.semcancer.2019.09.025

Sharma, G.; Modgil, A.; Layek, B.; Arora, K.; Sun, C.; Law, B.; Singh, J. Cell penetrating peptide tethered bi-ligand liposomes for delivery to brain in vivo: Biodistribution and transfection. J. Control. Release 2013, 167, 1–10. DOI: https://doi.org/10.1016/j.jconrel.2013.01.016

Ashrafizadeh, M.; Delfi, M.; Zarrabi, A.; Bigham, A.; Sharifi, E.; Rabiee, N.; Paiva-Santos, A.C.; Kumar, A.P.; Tan, S.C.; Hushmandi, K.; et al. Stimuli-responsive liposomal nanoformulations in cancer therapy: Pre-clinical & clinical approaches. J. Control. Release 2022, 351, 50–80. DOI: https://doi.org/10.1016/j.jconrel.2022.08.001

Zhou, S.; Li, J.; Yu, J.; Wang, Y.; Wang, Z.; He, Z.; Ouyang, D.; Liu, H.; Wang, Y. Tumor microenvironment adrenergic nerves blockade liposomes for cancer therapy. J. Control. Release 2022, 351, 656–666. DOI: https://doi.org/10.1016/j.jconrel.2022.09.049

Yang, S.; Shim, M.K.; Song, S.; Cho, H.; Choi, J.; Jeon, S.I.; Kim, W.J.; Um, W.; Park, J.H.; Yoon, H.Y.; et al. Liposome-mediated PD-L1 multivalent binding promotes the lysosomal degradation of PD-L1 for T cell-mediated antitumor immunity. Biomaterials 2022, 290, 121841. DOI: https://doi.org/10.1016/j.biomaterials.2022.121841

Liu, P.; Chen, G.; Zhang, J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022, 27, 1372. DOI: https://doi.org/10.3390/molecules27041372

Taléns-Visconti, R.; Díez-Sales, O.; de Julián-Ortiz, J.V.; Nácher, A. Nanoliposomes in Cancer Therapy: Marketed Products and Current Clinical Trials. Int. J. Mol. Sci. 2022, 23, 4249. DOI: https://doi.org/10.3390/ijms23084249

Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomed. 2006, 1, 297–315.

Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99 Pt. A, 28–51. DOI: https://doi.org/10.1016/j.addr.2015.09.012

Gabizon, A.; Catane, R.; Uziely, B.; Kaufman, B.; Safra, T.; Cohen, R.; Martin, F.; Huang, A.; Barenholz, Y. Prolonged Circulation Time and Enhanced Accumulation in Malignant Exudates of Doxorubicin Encapsulated in Polyethylene-glycol Coated Liposomes1. Cancer Res. 1994, 54, 987–992.

Luiz, M.T.; Dutra, J.A.P.; Ribeiro, T.D.C.; Carvalho, G.C.; Sábio, R.M.; Marchetti, J.M.; Chorilli, M. Folic acid-modified curcumin-loaded liposomes for breast cancer therapy. Colloids Surf. A Physicochem. Eng. Asp. 2022, 645, 128935. DOI: https://doi.org/10.1016/j.colsurfa.2022.128935

Kim, Y.; Youn, Y.S.; Oh, K.T.; Kim, D.; Lee, E.S. Tumor-Targeting Liposomes with Transient Holes Allowing Intact Rituximab Internally. Biomacromolecules 2021, 22, 723–731. DOI: https://doi.org/10.1021/acs.biomac.0c01514

Zalba, S.; Contreras, A.M.; Haeri, A.; ten Hagen, T.L.M.; Navarro, I.; Koning, G.; Garrido, M.J. Cetuximab-oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer. J. Control. Release 2015, 210, 26–38. DOI: https://doi.org/10.1016/j.jconrel.2015.05.271

Kim, D.-M.; Kim, M.; Park, H.-B.; Kim, K.-S.; Kim, D.-E. Anti-MUC1/CD44 Dual-Aptamer-Conjugated Liposomes for Cotargeting Breast Cancer Cells and Cancer Stem Cells. ACS Appl. Bio Mater. 2019, 2, 4622–4633. DOI: https://doi.org/10.1021/acsabm.9b00705

Nunes, S.S.; Miranda, S.E.M.; de Oliveira Silva, J.; Fernandes, R.S.; de Alcântara Lemos, J.; de Aguiar Ferreira, C.; Townsend, D.M.; Cassali, G.D.; Oliveira, M.C.; Branco de Barros, A.L. pH-responsive and folate-coated liposomes encapsulating irinotecan as an alternative to improve efficacy of colorectal cancer treatment. Biomed. Pharmacother. 2021, 144, 112317. DOI: https://doi.org/10.1016/j.biopha.2021.112317

Dai, Y.; Su, J.; Wu, K.; Ma, W.; Wang, B.; Li, M.; Sun, P.; Shen, Q.; Wang, Q.; Fan, Q. Multifunctional Thermosensitive Liposomes Based on Natural Phase-Change Material: Near-Infrared Light-Triggered Drug Release and Multimodal Imaging-Guided Cancer Combination Therapy. ACS Appl. Mater. Interfaces 2019, 11, 10540–10553. DOI: https://doi.org/10.1021/acsami.8b22748

Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application. Adv. Pharm. Bull. 2015, 5, 305–313. DOI: https://doi.org/10.15171/apb.2015.043

Mehnert, W.; Mäder, K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev. 2001, 47, 165–196. DOI: https://doi.org/10.1016/S0169-409X(01)00105-3

Bayón-Cordero, L.; Alkorta, I.; Arana, L. Application of Solid Lipid Nanoparticles to Improve the Efficiency of Anticancer Drugs. Nanomaterials 2019, 9, 474. DOI: https://doi.org/10.3390/nano9030474

Rodenak-Kladniew, B.; Islan, G.A.; de Bravo, M.G.; Durán, N.; Castro, G.R. Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy. Colloids Surf. B Biointerfaces 2017, 154, 123–132. DOI: https://doi.org/10.1016/j.colsurfb.2017.03.021

Wang, W.; Chen, T.; Xu, H.; Ren, B.; Cheng, X.; Qi, R.; Liu, H.; Wang, Y.; Yan, L.; Chen, S.; et al. Curcumin-Loaded Solid Lipid Nanoparticles Enhanced Anticancer Efficiency in Breast Cancer. Molecules 2018, 23, 1578. DOI: https://doi.org/10.3390/molecules23071578

Zheng, G.; Zheng, M.; Yang, B.; Fu, H.; Li, Y. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Biomed. Pharmacother. 2019, 116, 109006. DOI: https://doi.org/10.1016/j.biopha.2019.109006

Guimarães, K.L.; Ré, M.I. Lipid Nanoparticles as Carriers for Cosmetic Ingredients: The First (SLN) and the Second Generation (NLC). In Nanocosmetics and Nanomedicines: New Approaches for Skin Care; Beck, R., Guterres, S., Pohlmann, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 101–122. DOI: https://doi.org/10.1007/978-3-642-19792-5_5

Chauhan, I.; Yasir, M.; Verma, M.; Singh, A.P. Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery. Adv. Pharm. Bull. 2020, 10, 150–165. DOI: https://doi.org/10.34172/apb.2020.021

Jain, P.; Rahi, P.; Pandey, V.; Asati, S.; Soni, V. Nanostructure lipid carriers: A modish contrivance to overcome the ultraviolet effects. Egypt. J. Basic Appl. Sci. 2017, 4, 89–100. DOI: https://doi.org/10.1016/j.ejbas.2017.02.001

López-García, R.; Ganem-Rondero, A. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC): Occlusive Effect and Penetration Enhancement Ability. J. Cosmet. Dermatol. Sci. Appl. 2015, 5, 62. DOI: https://doi.org/10.4236/jcdsa.2015.52008

Fang, C.L.; Al-Suwayeh, S.A.; Fang, J.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat. Nanotechnol. 2013, 7, 41–55. DOI: https://doi.org/10.2174/187221013804484827

Karn-Orachai, K.; Smith, S.M.; Phunpee, S.; Treethong, A.; Puttipipatkhachorn, S.; Pratontep, S.; Ruktanonchai, U.R. The effect of surfactant composition on the chemical and structural properties of nanostructured lipid carriers. J. Microencapsul. 2014, 31, 609–618. DOI: https://doi.org/10.3109/02652048.2014.911374

Fernandes, R.S.; Silva, J.O.; Monteiro, L.O.F.; Leite, E.A.; Cassali, G.D.; Rubello, D.; Cardoso, V.N.; Ferreira, L.A.M.; Oliveira, M.C.; de Barros, A.L.B. Doxorubicin-loaded nanocarriers: A comparative study of liposome and nanostructured lipid carrier as alternatives for cancer therapy. Biomed. Pharmacother. 2016, 84, 252–257. DOI: https://doi.org/10.1016/j.biopha.2016.09.032

Rizwanullah, M.; Ahmad, M.Z.; Garg, A.; Ahmad, J. Advancement in design of nanostructured lipid carriers for cancer targeting and theranostic application. Biochim. Et Biophys. Acta (BBA)—Gen. Subj. 2021, 1865, 129936. DOI: https://doi.org/10.1016/j.bbagen.2021.129936

González-Vallinas, M.; González-Castejón, M.; Rodríguez-Casado, A.; Ramírez de Molina, A. Dietary phytochemicals in cancer prevention and therapy: A complementary approach with promising perspectives. Nutr. Rev. 2013, 71, 585–599. DOI: https://doi.org/10.1111/nure.12051

Poonia, N.; Kaur Narang, J.; Lather, V.; Beg, S.; Sharma, T.; Singh, B.; Pandita, D. Resveratrol loaded functionalized nanostructured lipid carriers for breast cancer targeting: Systematic development, characterization and pharmacokinetic evaluation. Colloids Surf. B Biointerfaces 2019, 181, 756–766. DOI: https://doi.org/10.1016/j.colsurfb.2019.06.004

Arabi, L.; Badiee, A.; Mosaffa, F.; Jaafari, M.R. Targeting CD44 expressing cancer cells with anti-CD44 monoclonal antibody improves cellular uptake and antitumor efficacy of liposomal doxorubicin. J. Control. Release 2015, 220, 275–286. DOI: https://doi.org/10.1016/j.jconrel.2015.10.044

Lee, S.-E.; Lee, C.D.; Ahn, J.B.; Kim, D.-H.; Lee, J.K.; Lee, J.-Y.; Choi, J.-S.; Park, J.-S. Hyaluronic acid-coated solid lipid nanoparticles to overcome drug-resistance in tumor cells. J. Drug Deliv. Sci. Technol. 2019, 50, 365–371. DOI: https://doi.org/10.1016/j.jddst.2019.01.042

Jia, D.; Wang, F.; Yang, Y.; Hu, P.; Song, H.; Lu, Y.; Wang, R.; Li, G.; Liu, R.; Li, J.; et al. Coupling EGFR-Antagonistic Affibody Enhanced Therapeutic Effects of Cisplatin Liposomes in EGFR-expressing Tumor Models. J. Pharm. Sci. 2022, 111, 450–457. DOI: https://doi.org/10.1016/j.xphs.2021.09.018

Tang, H.; Chen, J.; Wang, L.; Li, Q.; Yang, Y.; Lv, Z.; Bao, H.; Li, Y.; Luan, X.; Li, Y.; et al. Co-delivery of epirubicin and paclitaxel using an estrone-targeted PEGylated liposomal nanoparticle for breast cancer. Int. J. Pharm. 2020, 573, 118806. DOI: https://doi.org/10.1016/j.ijpharm.2019.118806

Soe, Z.C.; Thapa, R.K.; Ou, W.; Gautam, M.; Nguyen, H.T.; Jin, S.G.; Ku, S.K.; Oh, K.T.; Choi, H.-G.; Yong, C.S.; et al. Folate receptor-mediated celastrol and irinotecan combination delivery using liposomes for effective chemotherapy. Colloids Surf. B Biointerfaces 2018, 170, 718–728. DOI: https://doi.org/10.1016/j.colsurfb.2018.07.013

Moraes, S.; Marinho, A.; Lima, S.; Granja, A.; Araújo, J.P.; Reis, S.; Sousa, C.T.; Nunes, C. Targeted nanostructured lipid carriers for doxorubicin oral delivery. Int. J. Pharm. 2021, 592, 120029. DOI: https://doi.org/10.1016/j.ijpharm.2020.120029

Dumont, N.; Merrigan, S.; Turpin, J.; Lavoie, C.; Papavasiliou, V.; Geretti, E.; Espelin, C.W.; Luus, L.; Kamoun, W.S.; Ghasemi, O.; et al. Nanoliposome targeting in breast cancer is influenced by the tumor microenvironment. Nanomed. Nanotechnol. Biol. Med. 2019, 17, 71–81. DOI: https://doi.org/10.1016/j.nano.2018.12.010

D’Avanzo, N.; Torrieri, G.; Figueiredo, P.; Celia, C.; Paolino, D.; Correia, A.; Moslova, K.; Teesalu, T.; Fresta, M.; Santos, H.A. LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy. Int. J. Pharm. 2021, 597, 120346. DOI: https://doi.org/10.1016/j.ijpharm.2021.120346

Cohen, L.; Assaraf, Y.G.; Livney, Y.D. Novel Selectively Targeted Multifunctional Nanostructured Lipid Carriers for Prostate Cancer Treatment. Pharmaceutics 2021, 14, 88. DOI: https://doi.org/10.3390/pharmaceutics14010088

Akanda, M.; Getti, G.; Nandi, U.; Mithu, M.S.; Douroumis, D. Bioconjugated solid lipid nanoparticles (SLNs) for targeted prostate cancer therapy. Int. J. Pharm. 2021, 599, 120416. DOI: https://doi.org/10.1016/j.ijpharm.2021.120416

Shi, Z.; Zhou, Y.; Fan, T.; Lin, Y.; Zhang, H.; Mei, L. Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart Mater. Med. 2020, 1, 32–47. DOI: https://doi.org/10.1016/j.smaim.2020.05.002

Pugazhendhi, A.; Edison, T.N.J.I.; Karuppusamy, I.; Kathirvel, B. Inorganic nanoparticles: A potential cancer therapy for human welfare. Int. J. Pharm. 2018, 539, 104–111. DOI: https://doi.org/10.1016/j.ijpharm.2018.01.034

Majhi, K.C.; Yadav, M. Chapter 5—Synthesis of inorganic nanomaterials using carbohydrates. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Inamuddin, Boddula , R., Ahamed, M.I., Asiri, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 109–135. DOI: https://doi.org/10.1016/B978-0-12-821887-7.00003-3

Paul, W.; Sharma, C.P. 8—Inorganic nanoparticles for targeted drug delivery. In Biointegration of Medical Implant Materials; Sharma, C.P., Ed.; Woodhead Publishing: Sawston, UK, 2010; pp. 204–235. DOI: https://doi.org/10.1533/9781845699802.2.204

Kashapov, R.; Ibragimova, A.; Pavlov, R.; Gabdrakhmanov, D.; Kashapova, N.; Burilova, E.; Zakharova, L.; Sinyashin, O. Nanocarriers for Biomedicine: From Lipid Formulations to Inorganic and Hybrid Nanoparticles. Int. J. Mol. Sci. 2021, 22, 7055. DOI: https://doi.org/10.3390/ijms22137055

Liu, Q.; Kim, Y.-J.; Im, G.-B.; Zhu, J.; Wu, Y.; Liu, Y.; Bhang, S.H. Inorganic Nanoparticles Applied as Functional Therapeutics. Adv. Funct. Mater. 2021, 31, 2008171. DOI: https://doi.org/10.1002/adfm.202008171

Yang, H.Y.; Li, Y.; Lee, D.S. Recent Advances of pH-Induced Charge-Convertible Polymer-Mediated Inorganic Nanoparticles for Biomedical Applications. Macromol. Rapid Commun. 2020, 41, 2000106. DOI: https://doi.org/10.1002/marc.202000106

Sodipo, B.K.; Aziz, A.A. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica. J. Magn. Magn. Mater. 2016, 416, 275–291. DOI: https://doi.org/10.1016/j.jmmm.2016.05.019

Dadfar, S.M.; Roemhild, K.; Drude, N.I.; von Stillfried, S.; Knüchel, R.; Kiessling, F.; Lammers, T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev. 2019, 138, 302–325. DOI: https://doi.org/10.1016/j.addr.2019.01.005

Ngema, L.M.; Adeyemi, S.A.; Marimuthu, T.; Choonara, Y.E. A review on engineered magnetic nanoparticles in Non-Small-Cell lung carcinoma targeted therapy. Int. J. Pharm. 2021, 606, 120870. DOI: https://doi.org/10.1016/j.ijpharm.2021.120870

Dulińska-Litewka, J.; Łazarczyk, A.; Hałubiec, P.; Szafrański, O.; Karnas, K.; Karewicz, A. Superparamagnetic Iron Oxide Nanoparticles—Current and Prospective Medical Applications. Materials 2019, 12, 617. DOI: https://doi.org/10.3390/ma12040617

Schneider-Futschik, E.K.; Reyes-Ortega, F. Advantages and Disadvantages of Using Magnetic Nanoparticles for the Treatment of Complicated Ocular Disorders. Pharmaceutics 2021, 13, 1157. DOI: https://doi.org/10.3390/pharmaceutics13081157

Norouzi, M.; Yathindranath, V.; Thliveris, J.A.; Kopec, B.M.; Siahaan, T.J.; Miller, D.W. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: A combinational approach for enhanced delivery of nanoparticles. Sci. Rep. 2020, 10, 11292. DOI: https://doi.org/10.1038/s41598-020-68017-y

Illés, E.; Szekeres, M.; Tóth, I.Y.; Farkas, K.; Földesi, I.; Szabó, Á.; Iván, B.; Tombácz, E. PEGylation of Superparamagnetic Iron Oxide Nanoparticles with Self-Organizing Polyacrylate-PEG Brushes for Contrast Enhancement in MRI Diagnosis. Nanomaterials 2018, 8, 776. DOI: https://doi.org/10.3390/nano8100776

Ryu, C.; Lee, H.; Kim, H.; Hwang, S.; Hadadian, Y.; Mohanty, A.; Park, I.K.; Cho, B.; Yoon, J.; Lee, J.Y. Highly Optimized Iron Oxide Embedded Poly(Lactic Acid) Nanocomposites for Effective Magnetic Hyperthermia and Biosecurity. Int. J. Nanomed. 2022, 17, 31–44. DOI: https://doi.org/10.2147/IJN.S344257

Hajikarimi, Z.; Khoei, S.; Khoee, S.; Mahdavi, S.R. Evaluation of the cytotoxic effects of PLGA coated iron oxide nanoparticles as a carrier of 5- fluorouracil and mega-voltage X-ray radiation in DU145 prostate cancer cell line. IEEE Trans. Nanobioscience 2014, 13, 403–408. DOI: https://doi.org/10.1109/TNB.2014.2328868

Javid, A.; Ahmadian, S.; Saboury, A.A.; Kalantar, S.M.; Rezaei-Zarchi, S. Chitosan-Coated Superparamagnetic Iron Oxide Nanoparticles for Doxorubicin Delivery: Synthesis and Anticancer Effect against Human Ovarian Cancer Cells. Chem. Biol. Drug Des. 2013, 82, 296–306. DOI: https://doi.org/10.1111/cbdd.12145

Singh, A.; Bajpai, J.; Bajpai, A.K.; Mongre, R.K.; Lee, M.-S. Encapsulation of cytarabine into casein coated iron oxide nanoparticles (CCIONPs) and study of in vitro drug release and anticancer activities. J. Drug Deliv. Sci. Technol. 2020, 55, 101396. DOI: https://doi.org/10.1016/j.jddst.2019.101396

Hedayatnasab, Z.; Dabbagh, A.; Abnisa, F.; Wan Daud, W.M.A. Polycaprolactone-coated superparamagnetic iron oxide nanoparticles for in vitro magnetic hyperthermia therapy of cancer. Eur. Polym. J. 2020, 133, 109789. DOI: https://doi.org/10.1016/j.eurpolymj.2020.109789

Specht, J.M.; Lee, S.; Turtle, C.; Berger, C.; Veatch, J.; Gooley, T.; Mullane, E.; Chaney, C.; Riddell, S.; Maloney, D.G. Phase I study of immunotherapy for advanced ROR1+ malignancies with autologous ROR1-specific chimeric antigen receptor-modified (CAR)-T cells. J. Clin. Oncol. 2018, 36 (Suppl. 5), TPS79. DOI: https://doi.org/10.1200/JCO.2018.36.5_suppl.TPS79

Zhang, S.; Chen, L.; Wang-Rodriguez, J.; Zhang, L.; Cui, B.; Frankel, W.; Wu, R.; Kipps, T.J. The Onco-Embryonic Antigen ROR1 Is Expressed by a Variety of Human Cancers. Am. J. Pathol. 2012, 181, 1903–1910. DOI: https://doi.org/10.1016/j.ajpath.2012.08.024

Layek, B.; Singh, J. Amino Acid Grafted Chitosan for High Performance Gene Delivery: Comparison of Amino Acid Hydrophobicity on Vector and Polyplex Characteristics. Biomacromolecules 2013, 14, 485–494. DOI: https://doi.org/10.1021/bm301720g

Shirangi, A.; Mottaghitalab, F.; Dinarvand, S.; Atyabi, F. Theranostic silk sericin/SPION nanoparticles for targeted delivery of ROR1 siRNA: Synthesis, characterization, diagnosis and anticancer effect on triple-negative breast cancer. Int. J. Biol. Macromol. 2022, 221, 604–612. DOI: https://doi.org/10.1016/j.ijbiomac.2022.09.020

Wan, L.; Chen, Z.; Deng, Y.; Liao, T.; Kuang, Y.; Liu, J.; Duan, J.; Xu, Z.; Jiang, B.; Li, C. A novel intratumoral pH/redox-dual-responsive nanoplatform for cancer MR imaging and therapy. J. Colloid Interface Sci. 2020, 573, 263–277. DOI: https://doi.org/10.1016/j.jcis.2020.04.026

Li, J.; Cao, F.; Yin, H.-l.; Huang, Z.-j.; Lin, Z.-T.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis. 2020, 11, 88. DOI: https://doi.org/10.1038/s41419-020-2298-2

Fernández-Acosta, R.; Iriarte-Mesa, C.; Alvarez-Alminaque, D.; Hassannia, B.; Wiernicki, B.; Díaz-García, A.M.; Vandenabeele, P.; Vanden Berghe, T.; Pardo Andreu, G.L. Novel Iron Oxide Nanoparticles Induce Ferroptosis in a Panel of Cancer Cell Lines. Molecules 2022, 27, 3970. DOI: https://doi.org/10.3390/molecules27133970

Zhang, C.; Liu, X.; Jin, S.; Chen, Y.; Guo, R. Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol. Cancer 2022, 21, 47. DOI: https://doi.org/10.1186/s12943-022-01530-y

Medici, S.; Peana, M.; Coradduzza, D.; Zoroddu, M.A. Gold nanoparticles and cancer: Detection, diagnosis and therapy. Semin. Cancer Biol. 2021, 76, 27–37. DOI: https://doi.org/10.1016/j.semcancer.2021.06.017

Elahi, N.; Kamali, M.; Baghersad, M.H. Recent biomedical applications of gold nanoparticles: A review. Talanta 2018, 184, 537–556. DOI: https://doi.org/10.1016/j.talanta.2018.02.088

Hu, X.; Zhang, Y.; Ding, T.; Liu, J.; Zhao, H. Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities. Front. Bioeng. Biotechnol. 2020, 8, 990. DOI: https://doi.org/10.3389/fbioe.2020.00990

Herizchi, R.; Abbasi, E.; Milani, M.; Akbarzadeh, A. Current methods for synthesis of gold nanoparticles. Artif. Cells Nanomed. Biotechnol. 2016, 44, 596–602. DOI: https://doi.org/10.3109/21691401.2014.971807

Liu, X.-Y.; Wang, J.-Q.; Ashby, C.R.; Zeng, L.; Fan, Y.-F.; Chen, Z.-S. Gold nanoparticles: Synthesis, physiochemical properties and therapeutic applications in cancer. Drug Discov. Today 2021, 26, 1284–1292. DOI: https://doi.org/10.1016/j.drudis.2021.01.030

Hussain, M.H.; Abu Bakar, N.F.; Mustapa, A.N.; Low, K.-F.; Othman, N.H.; Adam, F. Synthesis of Various Size Gold Nanoparticles by Chemical Reduction Method with Different Solvent Polarity. Nanoscale Res. Lett. 2020, 15, 140. DOI: https://doi.org/10.1186/s11671-020-03370-5

Patil, M.P.; Kim, G.-D.J.C.; Biointerfaces, S.B. Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Colloids Surf. B Biointerfaces 2018, 172, 487–495. DOI: https://doi.org/10.1016/j.colsurfb.2018.09.007

Molnár, Z.; Bódai, V.; Szakacs, G.; Erdélyi, B.; Fogarassy, Z.; Sáfrán, G.; Varga, T.; Kónya, Z.; Tóth-Szeles, E.; Szűcs, R.; et al. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci. Rep. 2018, 8, 3943. DOI: https://doi.org/10.1038/s41598-018-22112-3

D’Acunto, M.; Cioni, P.; Gabellieri, E.; Presciuttini, G. Exploiting gold nanoparticles for diagnosis and cancer treatments. Nanotechnology 2021, 32, 192001. DOI: https://doi.org/10.1088/1361-6528/abe1ed

Li, W.; Chen, X. Gold nanoparticles for photoacoustic imaging. Nanomedicine 2015, 10, 299–320. DOI: https://doi.org/10.2217/nnm.14.169

Levy, E.S.; Tajon, C.A.; Bischof, T.S.; Iafrati, J.; Fernandez-Bravo, A.; Garfield, D.J.; Chamanzar, M.; Maharbiz, M.M.; Sohal, V.S.; Schuck, P.J. Energy-looping nanoparticles: Harnessing excited-state absorption for deep-tissue imaging. ACS Nano 2016, 10, 8423–8433. DOI: https://doi.org/10.1021/acsnano.6b03288

Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M.L.; Stroeve, P.; Mahmoudi, M. Toxicity of nanomaterials. Chem. Soc. Rev. 2012, 41, 2323–2343. DOI: https://doi.org/10.1039/C1CS15188F

Park, S.; Lee, W.J.; Park, S.; Choi, D.; Kim, S.; Park, N. Reversibly pH-responsive gold nanoparticles and their applications for photothermal cancer therapy. Sci. Rep. 2019, 9, 20180. DOI: https://doi.org/10.1038/s41598-019-56754-8

Mulens-Arias, V.; Nicolás-Boluda, A.; Pinto, A.; Balfourier, A.; Carn, F.; Silva, A.K.A.; Pocard, M.; Gazeau, F. Tumor-Selective Immune-Active Mild Hyperthermia Associated with Chemotherapy in Colon Peritoneal Metastasis by Photoactivation of Fluorouracil–Gold Nanoparticle Complexes. ACS Nano 2021, 15, 3330–3348. DOI: https://doi.org/10.1021/acsnano.0c10276

Khoobchandani, M.; Katti, K.K.; Karikachery, A.R.; Thipe, V.C.; Bloebaum, P.L.; Katti, K.V. Targeted phytochemical-conjugated gold nanoparticles in cancer treatment. In Biotechnology Products in Everyday Life; Springer: Berlin/Heidelberg, Germany, 2019; pp. 37–52. DOI: https://doi.org/10.1007/978-3-319-92399-4_3

Lee, C.S.; Kim, T.W.; Kang, Y.; Ju, Y.; Ryu, J.; Kong, H.; Jang, Y.S.; Oh, D.E.; Jang, S.J.; Cho, H.; et al. Targeted drug delivery nanocarriers based on hyaluronic acid-decorated dendrimer encapsulating gold nanoparticles for ovarian cancer therapy. Mater. Today Chem. 2022, 26, 101083. DOI: https://doi.org/10.1016/j.mtchem.2022.101083

Tunç, C.Ü.; Aydin, O. Co-delivery of Bcl-2 siRNA and doxorubicin through gold nanoparticle-based delivery system for a combined cancer therapy approach. J. Drug Deliv. Sci. Technol. 2022, 74, 103603. DOI: https://doi.org/10.1016/j.jddst.2022.103603

Y. Du, W. He, Q. Xia, W. Zhou, C. Yao and X. Li, Thioether Phosphatidylcholine Liposomes: A Novel ROS-Responsive Platform for Drug Delivery, ACS Appl. Mater. Interfaces, 2019, 11(41), 37411–37420 DOI: https://doi.org/10.1021/acsami.9b08901

D. Mundekkad and W. C. Cho, Nanoparticles in Clinical Translation for Cancer Therapy, Int. J. Mol. Sci., 2022, 23(3), 1685 DOI: https://doi.org/10.3390/ijms23031685

M. Durymanov, T. Kamaletdinova, S. E. Lehmann and J. Reineke, Exploiting passive nanomedicine accumulation at sites of enhanced vascular permeability for non-cancerous applications, J. Controlled Release, 2017, 261, 10–22 DOI: https://doi.org/10.1016/j.jconrel.2017.06.013

M. Estanqueiro, M. H. Amaral, J. Conceição and J. M. Sousa Lobo, Nanotechnological carriers for cancer chemotherapy: the state of the art, Colloids Surf. B Biointerfaces, 2015, 126, 631–648 DOI: https://doi.org/10.1016/j.colsurfb.2014.12.041

F. Danhier, N. Lecouturier, B. Vroman, C. Jérôme, J. Marchand-Brynaert and O. Feron, et al., Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation, J. Controlled Release, 2009, 133(1), 11–17 DOI: https://doi.org/10.1016/j.jconrel.2008.09.086

D. Kalyane, N. Raval, R. Maheshwari, V. Tambe, K. Kalia and R. K. Tekade, Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer, Mater. Sci. Eng. C, 2019, 98, 1252–1276 DOI: https://doi.org/10.1016/j.msec.2019.01.066

I. A. Khawar, J. H. Kim and H. J. Kuh, Improving drug delivery to solid tumors: priming the tumor microenvironment, J. Controlled Release, 2015, 201, 78–89 DOI: https://doi.org/10.1016/j.jconrel.2014.12.018

S. Brandenburg, A. Müller, K. Turkowski, Y. T. Radev, S. Rot and C. Schmidt, et al., Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors, Acta Neuropathol., 2016, 131(3), 365–378 DOI: https://doi.org/10.1007/s00401-015-1529-6

M. A. Subhan, S. S. K. Yalamarty, N. Filipczak, F. Parveen and V. P. Torchilin, Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment, J. Personalized Med., 2021, 11(6), 571 DOI: https://doi.org/10.3390/jpm11060571

J. Wu, The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application, J. Personalized Med., 2021, 11(8), 771 DOI: https://doi.org/10.3390/jpm11080771

Y. Nakamura, A. Mochida, P. L. Choyke and H. Kobayashi, Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer?, Bioconjugate Chem., 2016, 27(10), 2225–2238 DOI: https://doi.org/10.1021/acs.bioconjchem.6b00437

E. Huynh and G. Zheng, Cancer nanomedicine: addressing the dark side of the enhanced permeability and retention effect, Nanomedicine, 2015, 10(13), 1993–1995 DOI: https://doi.org/10.2217/nnm.15.86

V. Ejigah, O. Owoseni, P. Bataille-Backer, O. D. Ogundipe, F. A. Fisusi and S. K. Adesina, Approaches to Improve Macromolecule and Nanoparticle Accumulation in the Tumor Microenvironment by the Enhanced Permeability and Retention Effect, Polymers, 2022, 14(13), 2601 DOI: https://doi.org/10.3390/polym14132601

H. Wang, R. Qu, Q. Chen, T. Zhang, X. Chen and B. Wu, et al., PEGylated Prussian blue nanoparticles for modulating polyethyleneimine cytotoxicity and attenuating tumor hypoxia for dual-enhanced photodynamic therapy, J. Mater. Chem. B, 2022, 10(28), 5410–5421 DOI: https://doi.org/10.1039/D2TB00571A

X. Pei, Z. Zhu, Z. Gan, J. Chen, X. Zhang and X. Cheng, et al., PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity, Sci. Rep., 2020, 10(1), 2717 DOI: https://doi.org/10.1038/s41598-020-59624-w

Li, C., Wu, X., Zheng, C., Xu, S., Liu, Y., Qin, J., ... & Fei, W. (2022). Nanotechnology-integrated ferroptosis inducers: a sharp sword against tumor drug resistance. Journal of Materials Chemistry B, 10(38), 7671-7693. DOI: https://doi.org/10.1039/D2TB01350A

R. Baghban, L. Roshangar, R. Jahanban-Esfahlan, K. Seidi, A. Ebrahimi-Kalan and M. Jaymand, et al., Tumor microenvironment complexity and therapeutic implications at a glance, Cell Commun. Signal., 2020, 18(1), 59 DOI: https://doi.org/10.1186/s12964-020-0530-4

M. Upreti, A. Jyoti and P. Sethi, Tumor microenvironment and nanotherapeutics, Transl. Cancer Res., 2013, 2(4), 309–319

Y. Zhang, R. Lin, H. Li, W. He, J. Du and J. Wang, Strategies to improve tumor penetration of nanomedicines through nanoparticle design, WIREs Nanomed Nanobiotechnol [Internet], 2019;11(1). Available from: https://onlinelibrary.wiley.com/doi/10.1002/wnan.1519 DOI: https://doi.org/10.1002/wnan.1519

K. Li, D. Zhou, H. Cui, G. Mo, Y. Liu and K. Zheng, et al., Size-transformable gelatin/nanochitosan/doxorubicin nanoparticles with sequentially triggered drug release for anticancer therapy, Colloids Surf. B Biointerfaces, 2022, 220, 112927 DOI: https://doi.org/10.1016/j.colsurfb.2022.112927

H. Chen, Q. Guo, Y. Chu, C. Li, Y. Zhang and P. Liu, et al., Smart hypoxia-responsive transformable and charge-reversible nanoparticles for the deep penetration and tumor microenvironment modulation of pancreatic cancer, Biomaterials, 2022, 287, 121599 DOI: https://doi.org/10.1016/j.biomaterials.2022.121599

X. Wei, J. Wang, M. Liang and M. Song, Development of functional nanomedicines for tumor associated macrophages-focused cancer immunotherapy, Theranostics, 2022, 12(18), 7821–7852 DOI: https://doi.org/10.7150/thno.78572

J. Zhou, Z. Tang, S. Gao, C. Li, Y. Feng and X. Zhou, Tumor-Associated Macrophages: Recent Insights and Therapies, Front. Oncol., 2020, 10, 188 DOI: https://doi.org/10.3389/fonc.2020.00188

Z. He and S. Zhang, Tumor-Associated Macrophages and Their Functional Transformation in the Hypoxic Tumor Microenvironment, Front. Immunol., 2021, 12, 741305 DOI: https://doi.org/10.3389/fimmu.2021.741305

N. Kumari and S. H. Choi, Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies, J. Exp. Clin. Cancer Res., 2022, 41(1), 68 DOI: https://doi.org/10.1186/s13046-022-02272-x

S. Zhang, F. Xie, K. Li, H. Zhang, Y. Yin and Y. Yu, et al., Gold nanoparticle-directed autophagy intervention for antitumor immunotherapy via inhibiting tumor-associated macrophage M2 polarization, Acta Pharm. Sin., 2022, 12(7), 3124–3138 DOI: https://doi.org/10.1016/j.apsb.2022.02.008

L. Donthireddy, P. Vonteddu, T. Murthy, T. Kwak, R. N. Eraslan and J. R. Podojil, et al., ONP-302 Nanoparticles Inhibit Tumor Growth By Altering Tumor-Associated Macrophages And Cancer-Associated Fibroblasts, J. Cancer., 2022, 13(6), 1933–1944 DOI: https://doi.org/10.7150/jca.69338

P. Nakhaei, R. Margiana, D. O. Bokov, W. K. Abdelbasset, M. A. Jadidi Kouhbanani and R. S. Varma, et al., Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol, Front. Bioeng. Biotechnol., 2021, 9, 705886 DOI: https://doi.org/10.3389/fbioe.2021.705886

A Study of FF-10850 Topotecan Liposome Injection in Advanced Solid Tumors RECRUITING Advanced Solid Tumors DRUG: FF-10850 Topotecan Liposome Injection Fujifilm Pharmaceuticals U.S.A., Inc. INTERVENTIONAL NCT04047251.

U. Bulbake, S. Doppalapudi, N. Kommineni and W. Khan, Liposomal Formulations in Clinical Use: An Updated Review, Pharmaceutics, 2017, 9(4), 12 DOI: https://doi.org/10.3390/pharmaceutics9020012

E. Beltrán-Gracia, A. López-Camacho, I. Higuera-Ciapara, J. B. Velázquez-Fernández and A. A. Vallejo-Cardona, Nanomedicine review: clinical developments in liposomal applications, Cancer Nanotechnol., 2019, 10(1), 11 DOI: https://doi.org/10.1186/s12645-019-0055-y

F. Rommasi and N. Esfandiari, Liposomal Nanomedicine: Applications for Drug Delivery in Cancer Therapy, Nanoscale Res. Lett., 2021, 16(1), 95 DOI: https://doi.org/10.1186/s11671-021-03553-8

A. C. Krauss, X. Gao, L. Li, M. L. Manning, P. Patel and W. Fu, et al., FDA Approval Summary: (Daunorubicin and Cytarabine) Liposome for Injection for the Treatment of Adults with High-Risk Acute Myeloid Leukemia, Clin. Cancer Res., 2019, 25(9), 2685–2690 DOI: https://doi.org/10.1158/1078-0432.CCR-18-2990

I. Judson, J. A. Radford, M. Harris, J. Y. Blay, Q. van Hoesel and A. le Cesne, et al., Randomised phase II trial of pegylated liposomal doxorubicin (DOXIL®/CAELYX®) versus doxorubicin in the treatment of advanced or metastatic soft tissue sarcoma, Eur. J. Cancer, 2001, 37(7), 870–877 DOI: https://doi.org/10.1016/S0959-8049(01)00050-8

S. Tran, P. DeGiovanni, B. Piel and P. Rai, Cancer nanomedicine: a review of recent success in drug delivery, Clinical and Translational Medicine [Internet], 2017;6(1). Available from: https://onlinelibrary.wiley.com/doi/abs/10.1186/s40169-017-0175-0 DOI: https://doi.org/10.1186/s40169-017-0175-0

D. Bobo, K. J. Robinson, J. Islam, K. J. Thurecht and S. R. Corrie, Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date, Pharm. Res., 2016, 33(10), 2373–2387 DOI: https://doi.org/10.1007/s11095-016-1958-5

P. Chowdhury, U. Ghosh, K. Samanta, M. Jaggi, S. C. Chauhan and M. M. Yallapu, Bioactive nanotherapeutic trends to combat triple negative breast cancer, Bioact. Mater., 2021, 6(10), 3269–3287 DOI: https://doi.org/10.1016/j.bioactmat.2021.02.037

A. Karabasz, M. Bzowska and K. Szczepanowicz, Biomedical Applications of Multifunctional Polymeric Nanocarriers: A Review of Current Literature, Int. J. Neurol., 2020, 15, 8673–8696. DOI: https://doi.org/10.2147/IJN.S231477

D. Alromi, S. Madani and A. Seifalian, Emerging Application of Magnetic Nanoparticles for Diagnosis and Treatment of Cancer, Polymers, 2021, 13(23), 4146 DOI: https://doi.org/10.3390/polym13234146

F. Rodríguez, P. Caruana, N. De la Fuente, P. Español, M. Gámez and J. Balart, et al., Nano-Based Approved Pharmaceuticals for Cancer Treatment: Present and Future Challenges, Biomolecules, 2022, 12(6), 784 DOI: https://doi.org/10.3390/biom12060784

Published

15-01-2023

How to Cite

Alajmi, A. A., Al Otaibi, S. G., Alzubidi, A. H. A., Alanazi, A. A. A., Almorshed, ‏Abdullah S. A., Alrbian, A. A. M., & Alzubidi, A. H. A. (2023). Advancements in nanomedicine: Targeted drug delivery systems for cancer treatment. International Journal of Health Sciences, 7(S1), 3655–3682. https://doi.org/10.53730/ijhs.v7nS1.15291

Issue

Section

Peer Review Articles

Most read articles by the same author(s)

<< < 1 2