Urinary Tract Infections (UTIs): Laboratory diagnosis - The role of artificial intelligence and smart diagnosis

https://doi.org/10.53730/ijhs.v8nS1.15294

Authors

  • Maryam Abdullah AlThowaimer Al-Ahsa health Cluster, Ministry of Health
  • Waseem Ali Alquwayi King Abdulaziz Hospital, Alahsa Ministry of National Guard Health Affairs
  • Abdulaziz Ali Almuarik King Abdulaziz Hospital, Alahsa Ministry of National Guard Health Affairs
  • Yasser Abdrab Alameer Alkuwaiti King Abdulaziz Hospital, Alahsa Ministry of National Guard Health Affairs
  • Ahmed Mohammed Almehainy King Abdulaziz Hospital, Alahsa Ministry of National Guard Health Affairs
  • Bakr Mansour Alqahtani King Abdulaziz Hospital, Alahsa Ministry of National Guard Health Affairs
  • Mazen Ibrahim Mohammed Otaif King Abdulaziz Hospital, Alahsa Ministry of National Guard Health Affairs
  • Tahani Abbas Alkattan King Abdulaziz Hospital, Alahsa Ministry of National Guard Health Affairs
  • Mohammed Abdullah Alharbi King Abdulaziz Hospital, Alahsa Ministry of National Guard Health Affairs
  • Mohammed Hasan Albather King Abdulaziz Hospital, Alahsa Ministry of National Guard Health Affairs
  • Abdulaziz Saud Awad Alanazi Prince Mohammed Bin Abdulaziz Hospital, Al Madinah Ministry of National Guard Health Affairs
  • Ahmed Salem Rajeh Almohammadi Prince Mohammed Bin Abdulaziz Hospital, Al Madinah Ministry of National Guard Health Affairs

Keywords:

urinary tract infections, artificial intelligence, machine learning, diagnosis, vulnerable populations, healthcare efficiency

Abstract

Background: Urinary tract infections (UTIs) are prevalent outpatient conditions affecting up to 50% of individuals, with diagnostic errors common in clinical settings. The traditional reliance on clinical criteria alone yields a diagnostic error rate of about 33%, necessitating improved diagnostic methods. Aim: This mini-review evaluates the role of artificial intelligence (AI) and smart diagnostic tools in enhancing UTI diagnosis, particularly within vulnerable populations. Methods: A comprehensive literature review was conducted, assessing 782 articles, of which 14 met the inclusion criteria for AI applications in UTI diagnosis. These studies were categorized based on their focus: uncomplicated UTIs, complicated UTIs, and specific demographic groups. Results: The review revealed that 12 studies employed machine learning techniques while 2 utilized deep learning. The most frequently used models included artificial neural networks (ANNs) and extreme gradient boosting (XGBoost). Key variables influencing predictive models encompassed demographic data, anamnesis, and comorbidities. Notably, models for diagnosing uncomplicated UTIs achieved accuracy rates of up to 98.3%, while approaches for complicated UTIs demonstrated area under the curve (AUC) values ranging from 0.71 to 0.904. AI models were particularly effective in stratifying high-risk subgroups, including pregnant women and children, with models achieving AUCs of 0.82 and 0.83 for specific populations.

Downloads

Download data is not yet available.

References

Adrover-Jaume C, Rojo-Molinero E, Clemente A, Russell SM, Arranz J, Oliver A, et al. Mobile origami immunosensors for the rapid detection of urinary tract infections. Analyst. 2020;145:7916–21. https://doi.org/10.1039/d0an01218a. DOI: https://doi.org/10.1039/D0AN01218A

Medina M, Castillo-Pino E. An introduction to the epidemiology and burden of urinary tract infections. Ther Adv Urol. 2019;11:175628721983217. https://doi.org/10.1177/1756287219832172. DOI: https://doi.org/10.1177/1756287219832172

Foxman B. Urinary tract infection syndromes. Infect Dis Clin North Am. 2014;28:1–13. https://doi.org/10.1016/j.idc.2013.09.003. DOI: https://doi.org/10.1016/j.idc.2013.09.003

Andreini P, Bonechi S, Bianchini M, Garzelli A, Mecocci A. Automatic image classification for the urinoculture screening. Comput Biol Med. 2016;70:12–22. https://doi.org/10.1016/j.compbiomed.2015.12.025. DOI: https://doi.org/10.1016/j.compbiomed.2015.12.025

Johansen TE, Botto H, Cek M, Grabe M, Tenke P, Wagenlehner FM, et al. Critical review of current definitions of urinary tract infections and proposal of an EAU/ESIU classification system. Int J Antimicrob Agents. 2011;38:64–70. https://doi.org/10.1016/j.ijantimicag.2011.09.009. DOI: https://doi.org/10.1016/j.ijantimicag.2011.09.009

Xie R, Li X, Li G, Fu R. Diagnostic value of different urine tests for urinary tract infection: a systematic review and meta-analysis. Transl Androl Urol. 2022;11(3):325–35. https://doi.org/10.21037/tau-22-65. DOI: https://doi.org/10.21037/tau-22-65

Alkhawaldeh R, Abu Farha R, Abu Hammour K, Alefishat E. Optimizing antimicrobial therapy in urinary tract infections: a focus on urine culture and sensitivity testing. Front Pharmacol. 2022;13:1058669. https://doi.org/10.3389/fphar.2022.1058669. DOI: https://doi.org/10.3389/fphar.2022.1058669

Tan NC, Koong AYL, Ng LP, Hu PL, Koh EYL, Tan KT, et al. Accuracy of urinary symptoms and urine microscopy in diagnosing urinary tract infection in women. Fam Pract. 2019;36:417–24. https://doi.org/10.1093/fampra/cmy108. DOI: https://doi.org/10.1093/fampra/cmy108

Hansen MA, Valentine-King M, Zoorob R, Schlueter M, Matas JL, Willis SE, et al. Prevalence and predictors of urine culture contamination in primary care: a cross-sectional study. Int J Nurs Stud. 2022;134: 104325. https://doi.org/10.1016/j.ijnurstu.2022.104325. DOI: https://doi.org/10.1016/j.ijnurstu.2022.104325

Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med. 2022;28:31–8. https://doi.org/10.1038/s41591-021-01614-0. DOI: https://doi.org/10.1038/s41591-021-01614-0

Herter WE, Khuc J, Cinà G, Knottnerus BJ, Numans ME, Wiewel MA, et al. Impact of a machine learning-based decision support system for urinary tract infections: prospective observational study in 36 primary care practices. JMIR Med Inform. 2022;10(5):e27795. https://doi.org/10.2196/27795. DOI: https://doi.org/10.2196/27795

Ozkan IA, Koklu M, Sert IU. Diagnosis of urinary tract infection based on artificial intelligence methodsComput. Methods Programs Biomed. Update. 2018;166:51–9. https://doi.org/10.1016/j.cmpb.2018.10.007 DOI: https://doi.org/10.1016/j.cmpb.2018.10.007

Gadalla AA, Friberg IM, Kift-Morgan A, Zhang J, Eberl M, Topley N, et al. Identification of clinical and urine biomarkers for uncomplicated urinary tract infection using machine learning algorithms. Sci Rep. 2019;9:19694. https://doi.org/10.1038/s41598-019-55523-x. DOI: https://doi.org/10.1038/s41598-019-55523-x

Dhanda G, Asham M, Shanks D, O’Malley N, Hake J, Satyan MT, et al. Adaptation and external validation of pathogenic urine culture prediction in primary care using machine learning. Ann Fam Med. 2023;21:11–8. https://doi.org/10.1370/afm.2902. DOI: https://doi.org/10.1370/afm.2902

Arches PM, Austero AR, Diaz AJ, Taer HJ, Fabregas AC. Detecting urinary tract infection (UTI) thru analytes level using convolutional neural network and support vector machine. The 9th International Conference on Information Technology: IoT and Smart City. 2021; 85–92. https://doi.org/10.1145/3512576.3512591. DOI: https://doi.org/10.1145/3512576.3512591

Møller JK, Sørensen M, Hardahl C. Prediction of risk of acquiring urinary tract infection during hospital stay based on machine-learning: a retrospective cohort study. PLoS ONE. 2021;16:e0248636. https://doi.org/10.1371/journal.pone.0248636. DOI: https://doi.org/10.1371/journal.pone.0248636

Taylor RA, Moore CL, Cheung KH, Brandt C. Predicting urinary tract infections in the emergency department with machine learning. PLoS ONE. 2018;13: e0194085. https://doi.org/10.1371/journal.pone.0194085. DOI: https://doi.org/10.1371/journal.pone.0194085

Mancini A, Vito L, Marcelli E, Piangerelli M, De Leone R, Pucciarelli S, et al. Machine learning models predicting multidrug resistant urinary tract infections using “DsaaS.” BMC Bioinformatics. 2020;21:347. https://doi.org/10.1186/s12859-020-03566-7. DOI: https://doi.org/10.1186/s12859-020-03566-7

Cai T, Anceschi U, Prata F, Collini L, Brugnolli A, Migno S, et al. Artificial intelligence can guide antibiotic choice in recurrent UTIs and become an important aid to improve antimicrobial stewardship. Antibiotics (Basel). 2023;12:375. https://doi.org/10.3390/antibiotics12020375. DOI: https://doi.org/10.3390/antibiotics12020375

• Chen TJ, Hsu YH, Chen CH. Comparison of neural network and logistic regression analysis to predict the probability of urinary tract infection caused by cystoscopy. Biomed Res Int. 2022;2022:5775447. https://doi.org/10.1155/2022/5775447. DOI: https://doi.org/10.1155/2022/5775447

Hong X, Liu G, Chi Z, Yang T, Zhang Y. Predictive model for urosepsis in patients with upper urinary tract calculi based on ultrasonography and urinalysis using artificial intelligence learning. Int Braz J Urol. 2023;49:221–32. https://doi.org/10.1590/S1677-5538.IBJU.2022.0450. DOI: https://doi.org/10.1590/s1677-5538.ibju.2022.0450

Ansaldi Y, Martinez de Tejada Weber B. Urinary tract infections in pregnancy. Clin Microbiol Infect. 2023;29:1249–53. https://doi.org/10.1016/j.cmi.2022.08.015. DOI: https://doi.org/10.1016/j.cmi.2022.08.015

Tullus K, Shaikh N. Urinary tract infections in children. Lancet. 2020;395:1659–68. https://doi.org/10.1016/S0140-6736(20)30676-0. DOI: https://doi.org/10.1016/S0140-6736(20)30676-0

Bertsimas D, Li M, Estrada C, Nelson C, Scott Wang HH. Selecting children with vesicoureteral reflux who are most likely to benefit from antibiotic prophylaxis: application of machine learning to RIVUR. J Urol. 2021;205:1170–9. https://doi.org/10.1097/JU.0000000000001445. DOI: https://doi.org/10.1097/JU.0000000000001445

Burton RJ, Albur M, Eberl M, Cuff SM. Using artificial intelligence to reduce diagnostic workload without compromising detection of urinary tract infections. BMC Med Inform Decis Mak. 2019;19:171. https://doi.org/10.1186/s12911-019-0878-9. DOI: https://doi.org/10.1186/s12911-019-0878-9

Li YM, Xu JH, Zhao YX. Predictors of urinary tract infection in acute stroke patients: a cohort study. Medicine (Baltimore). 2020;99: e20952. https://doi.org/10.1097/MD.0000000000020952. DOI: https://doi.org/10.1097/MD.0000000000020952

Zhu C, Xu Z, Gu Y, Zheng S, Sun X, Cao J, et al. Prediction of post-stroke urinary tract infection risk in immobile patients using machine learning: an observational cohort study. J Hosp Infect. 2022;122:96–107. https://doi.org/10.1016/j.jhin.2022.01.002. DOI: https://doi.org/10.1016/j.jhin.2022.01.002

Xu Z, Zhu C, Gu Y, Zheng S, Sun X, Cao J, et al. Developing a Siamese network for UTIs risk prediction in immobile patients undergoing stroke. Stud Health Technol Inform. 2022;290:714–8. https://doi.org/10.3233/SHTI220171. DOI: https://doi.org/10.3233/SHTI220171

Published

15-01-2024

How to Cite

AlThowaimer, M. A., Alquwayi, W. A., Almuarik, A. A., Alameer Alkuwaiti, Y. A., Almehainy, A. M., Alqahtani, B. M., Mohammed Otaif, M. I., Alkattan, T. A., Alharbi, M. A., Albather, M. H., Awad Alanazi, A. S., & Rajeh Almohammadi, A. S. (2024). Urinary Tract Infections (UTIs): Laboratory diagnosis - The role of artificial intelligence and smart diagnosis. International Journal of Health Sciences, 8(S1), 1484–1493. https://doi.org/10.53730/ijhs.v8nS1.15294

Issue

Section

Peer Review Articles

Most read articles by the same author(s)