Pathology and clinical practice

A review of the latest diagnostic techniques and tools in cancer diagnosis

https://doi.org/10.53730/ijhs.v7nS1.15110

Authors

  • Sulaiman Sleem Alatawi ‏King Abdulaziz Hospital, Alahsa, ‏Ministry of National Guard Health Affairs
  • Ali Moharag Hadadi ‏King Abdulaziz Hospital, Alahsa, ‏Ministry of National Guard Health Affairs
  • Munirah Mohammed Almulhim ‏King Abdulaziz Hospital, Alahsa, ‏Ministry of National Guard Health Affairs
  • Maryam Mousa Ahmed Almousa ‏King Abdulaziz Hospital, Alahsa, ‏Ministry of National Guard Health Affairs
  • Adel Ahmed Alkhathami ‏King Abdulaziz Hospital, Alahsa, ‏Ministry of National Guard Health Affairs
  • Bakr Mansour Alqahtani ‏King Abdulaziz Hospital, Alahsa, ‏Ministry of National Guard Health Affairs
  • Maryam Ahmed Almuhaysh ‏King Abdulaziz Hospital, Alahsa, ‏Ministry of National Guard Health Affairs
  • Jawaher Sadun Alsadun ‏King Abdulaziz Hospital, Alahsa, ‏Ministry of National Guard Health Affairs
  • Mazen Ibrahim Mohammed Otaif ‏King Abdulaziz Hospital, Alahsa, ‏Ministry of National Guard Health Affairs
  • Lujain Yousef Almulhim King Abdulaziz Hospital, Alahsa, ‏Ministry of National Guard Health Affairs
  • Abdullah Mohammed Alanazi Prince Mohammed Bin Abdulaziz Hospital, Al Madinah Ministry of National Guard Health Affairs

Keywords:

Cancer diagnosis, molecular biomarkers, deep learning, histology image analysis, predictive biomarkers, clinical decision-making

Abstract

Background: The advent of molecular biomarkers has revolutionized cancer diagnosis and treatment, enhancing the precision of therapeutic strategies for solid tumors. However, the complexity of clinical decision-making has escalated with the increasing number of prognostic and predictive biomarkers. The integration of deep learning (DL) in histology image analysis promises to streamline these processes. Aim: This review aims to evaluate the latest diagnostic techniques and tools in cancer diagnosis, focusing on the role of molecular biomarkers and deep learning in enhancing clinical outcomes. Methods: A comprehensive review of recent studies and clinical trials was conducted, examining the impact of molecular biomarkers on cancer treatment and the application of DL in histology image analysis. The review covered fundamental DL applications in tumor identification, grading, subtyping, and advanced applications in predicting genetic mutations, treatment responses, and survival outcomes. Results: DL-based methods have shown high accuracy in automating histopathology workflows, matching or surpassing human performance in tumor detection and classification. Advanced DL applications offer new insights by predicting genetic alterations and clinical outcomes directly from histology images, which could significantly impact clinical decision-making.

Downloads

Download data is not yet available.

References

Petrelli, F., Ghidini, M., Cabiddu, M., Pezzica, E., Corti, D., Turati, L. et al. Microsatellite instability and survival in stage II colorectal cancer: a systematic review and meta-analysis. Anticancer Res. 39, 6431–6441 (2019). DOI: https://doi.org/10.21873/anticanres.13857

Le, D. T., Durham, J. N., Smith, K. N., Wang, H., Bartlett, B. R., Aulakh, L. K. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017). DOI: https://doi.org/10.1126/science.aan6733

Naito, Y. & Urasaki, T. Precision medicine in breast cancer. Chin. Clin. Oncol. 7, 29 (2018). DOI: https://doi.org/10.21037/cco.2018.06.04

Costa, R. L. B. & Czerniecki, B. J. Clinical development of immunotherapies for HER2+ breast cancer: a review of HER2-directed monoclonal antibodies and beyond. npj Breast Cancer 6, 10 (2020). DOI: https://doi.org/10.1038/s41523-020-0153-3

Mayekar, M. K. & Bivona, T. G. Current landscape of targeted therapy in lung cancer. Clin. Pharmacol. Ther. 102, 757–764 (2017). DOI: https://doi.org/10.1002/cpt.810

Geng, F., Wang, Z., Yin, H., Yu, J. & Cao, B. Molecular targeted drugs and treatment of colorectal cancer: recent progress and future perspectives. Cancer Biother. Radiopharm. 32, 149–160 (2017). DOI: https://doi.org/10.1089/cbr.2017.2210

Lim, S. M., Hong, M. H. & Kim, H. R. Immunotherapy for non-small cell lung cancer: current landscape and future perspectives. Immune Netw. 20, e10 (2020). DOI: https://doi.org/10.4110/in.2020.20.e10

Hiley, C. T., Le Quesne, J., Santis, G., Sharpe, R., de Castro, D. G., Middleton, G. et al. Challenges in molecular testing in non-small-cell lung cancer patients with advanced disease. Lancet 388, 1002–1011 (2016). DOI: https://doi.org/10.1016/S0140-6736(16)31340-X

Kim, S. Y. & Kim, T. W. Current challenges in the implementation of precision oncology for the management of metastatic colorectal cancer. ESMO Open 5, https://doi.org/10.1136/esmoopen-2019-000634 (2020). DOI: https://doi.org/10.1136/esmoopen-2019-000634

Diaz, L. A., Le, D. T., Yoshino, T., André, T., Bendell, J. C., Rosales, M. et al. KEYNOTE-177: phase 3, open-label, randomized study of first-line pembrolizumab (Pembro) versus investigator-choice chemotherapy for mismatch repair-deficient (dMMR) or microsatellite instability-high (MSI-H) metastatic colorectal carcinoma (mCRC). J. Clin. Orthod. 36, TPS877–TPS877 (2018). DOI: https://doi.org/10.1200/JCO.2018.36.4_suppl.TPS877

Coleman, R. L., Oza, A. M., Lorusso, D., Aghajanian, C., Oaknin, A., Dean, A. et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390, 1949–1961 (2017). DOI: https://doi.org/10.1016/S0140-6736(17)32440-6

Cocco, E., Scaltriti, M. & Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 15, 731–747 (2018). DOI: https://doi.org/10.1038/s41571-018-0113-0

Peters, S., Camidge, D. R., Shaw, A. T., Gadgeel, S., Ahn, J. S., Kim, D.-W. et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 377, 829–838 (2017). DOI: https://doi.org/10.1056/NEJMoa1704795

Moro-Sibilot, D., Cozic, N., Pérol, M., Mazières, J., Otto, J., Souquet, P. J. et al. Crizotinib in c-MET- or ROS1-positive NSCLC: results of the AcSé phase II trial. Ann. Oncol. https://doi.org/10.1093/annonc/mdz407 (2019). DOI: https://doi.org/10.1093/annonc/mdz407

Ardila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reicher, J. J., Peng, L. et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 25, 954–961 (2019). DOI: https://doi.org/10.1038/s41591-019-0447-x

Lundervold, A. S. & Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 29, 102–127 (2019). DOI: https://doi.org/10.1016/j.zemedi.2018.11.002

Yamada, M., Saito, Y., Imaoka, H., Saiko, M., Yamada, S., Kondo, H. et al. Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy. Sci. Rep. 9, 14465 (2019). DOI: https://doi.org/10.1038/s41598-019-50567-5

Luo, H., Xu, G., Li, C., He, L., Luo, L., Wang, Z. et al. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study. Lancet Oncol. https://doi.org/10.1016/S1470-2045(19)30637-0 (2019). DOI: https://doi.org/10.1016/S1470-2045(19)30637-0

Yap, J., Yolland, W. & Tschandl, P. Multimodal skin lesion classification using deep learning. Exp. Dermatol. 27, 1261–1267 (2018). DOI: https://doi.org/10.1111/exd.13777

Haenssle, H. A., Fink, C., Schneiderbauer, R., Toberer, F., Buhl, T., Blum, A. et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 29, 1836–1842 (2018).

Fassler, D. J., Abousamra, S., Gupta, R., Chen, C., Zhao, M., Paredes, D. et al. Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images. Diagn. Pathol. 15, 100 (2020). DOI: https://doi.org/10.1186/s13000-020-01003-0

Hermsen, M., de Bel, T., den Boer, M., Steenbergen, E. J., Kers, J., Florquin, S. et al. Deep learning-based histopathologic assessment of kidney tissue. J. Am. Soc. Nephrol. 30, 1968–1979 (2019). DOI: https://doi.org/10.1681/ASN.2019020144

Campanella, G., Hanna, M. G., Geneslaw, L., Miraflor, A., Werneck Krauss Silva, V., Busam, K. J. et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25, 1301–1309 (2019). DOI: https://doi.org/10.1038/s41591-019-0508-1

Bulten, W., Pinckaers, H., van Boven, H., Vink, R., de Bel, T., van Ginneken, B. et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 21, 233–241 (2020). DOI: https://doi.org/10.1016/S1470-2045(19)30739-9

Ström, P., Kartasalo, K., Olsson, H., Solorzano, L., Delahunt, B., Berney, D. M. et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncol. 21, 222–232 (2020). DOI: https://doi.org/10.1016/S1470-2045(19)30738-7

Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyö, D. et al. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018). DOI: https://doi.org/10.1038/s41591-018-0177-5

Kather, J. N., Pearson, A. T., Halama, N., Jäger, D., Krause, J., Loosen, S. H. et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25, 1054–1056 (2019). DOI: https://doi.org/10.1038/s41591-019-0462-y

Cruz-Roa, A., Gilmore, H., Basavanhally, A., Feldman, M., Ganesan, S., Shih, N. N. C. et al. Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent. Sci. Rep. 7, https://doi.org/10.1038/srep46450 (2017). DOI: https://doi.org/10.1038/srep46450

Wang, X., Chen, H., Gan, C., Lin, H., Dou, Q., Tsougenis, E. et al. Weakly supervised deep learning for whole slide lung cancer image analysis. IEEE Trans. Cybern. https://doi.org/10.1109/TCYB.2019.2935141 (2019). DOI: https://doi.org/10.1109/TCYB.2019.2935141

Falk, T., Mai, D., Bensch, R., Çiçek, Ö., Abdulkadir, A., Marrakchi, Y. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 67–70 (2019). DOI: https://doi.org/10.1038/s41592-018-0261-2

Shahin, A. I., Guo, Y., Amin, K. M. & Sharawi, A. A. White blood cells identification system based on convolutional deep neural learning networks. Comput. Methods Programs Biomed. 168, 69–80 (2019). DOI: https://doi.org/10.1016/j.cmpb.2017.11.015

McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H. et al. International evaluation of an AI system for breast cancer screening. Nature 577, 89–94 (2020). DOI: https://doi.org/10.1038/s41586-019-1799-6

Batchelor, E., Loewer, A. & Lahav, G. The ups and downs of p53: understanding protein dynamics in single cells. Nat. Rev. Cancer 9, 371–377 (2009). DOI: https://doi.org/10.1038/nrc2604

Schneider, G., Schmidt-Supprian, M., Rad, R. & Saur, D. Tissue-specific tumorigenesis: context matters. Nat. Rev. Cancer 17, 239–253 (2017). DOI: https://doi.org/10.1038/nrc.2017.5

Mueller, M. M. & Fusenig, N. E. Friends or foes-bipolar effects of the tumour stroma in cancer. Nat. Rev. Cancer 4, 839–849 (2004). DOI: https://doi.org/10.1038/nrc1477

Schaumberg, A. J., Rubin, M. A., Fuchs, T. J. H&E-stained whole slide image deep learning predicts SPOP mutation state in prostate cancer. Preprint at https://www.biorxiv.org/content/10.1101/064279v9 (2018).

Kim, R. H., Nomikou, S., Dawood, Z., Jour, G., Donnelly, D., Moran, U. et al. A deep learning approach for rapid mutational screening in melanoma. Preprint at https://ww.biorxiv.org/content/10.1101/610311v1 (2019). DOI: https://doi.org/10.1101/610311

Schmauch, B., Romagnoni, A., Pronier, E., Saillard, C., Maillé, P., Calderaro, J. et al. A deep learning model to predict RNA-Seq expression of tumours from whole slide images. Nat. Commun. 11, https://doi.org/10.1038/s41467-020-17678-4 (2020). DOI: https://doi.org/10.1038/s41467-020-17678-4

Kather, J. N., Heij, L. R., Grabsch, H. I., Loeffler, C., Echle, A., Muti, H. S. et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat. Cancer https://doi.org/10.1038/s43018-020-0087-6 (2020). DOI: https://doi.org/10.1038/s43018-020-0087-6

Fu, Y., Jung, A. W., Torne, R. V., Gonzalez, S., Vohringer, H., Jimenez-Linan, M. et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Preprint at https://www.biorxiv.org/content/10.1101/813543v1 (2019). DOI: https://doi.org/10.1101/813543

Glynne-Jones, R., Wyrwicz, L., Tiret, E., Brown, G., Rodel, C., Cervantes, A. et al. Rectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 28 (Suppl 4), iv22–40 (2017). DOI: https://doi.org/10.1093/annonc/mdx224

Modest, D. P., Martens, U. M., Riera-Knorrenschild, J., Greeve, J., Florschütz, A., Wessendorf, S. et al. FOLFOXIRI plus panitumumab as first-line treatment of RAS wild-type metastatic colorectal cancer: the randomized, open-label, phase II VOLFI study (AIO KRK0109). J. Clin. Oncol. 35, 3401–3411 (2019). DOI: https://doi.org/10.1200/JCO.19.01340

Templeton, A. J., McNamara, M. G., Šeruga, B., Vera-Badillo, F. E., Aneja, P., Ocaña, A. et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J. Natl Cancer Inst. 106, dju124 (2014). DOI: https://doi.org/10.1093/jnci/dju124

Kleppe, A., Albregtsen, F., Vlatkovic, L., Pradhan, M., Nielsen, B., Hveem, T. S. et al. Chromatin organisation and cancer prognosis: a pan-cancer study. Lancet Oncol. 19, 356–369 (2018). DOI: https://doi.org/10.1016/S1470-2045(17)30899-9

Kather, J. N., Krisam, J., Charoentong, P., Luedde, T., Herpel, E., Weis, C.-A. et al. Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. PLoS Med.

Courtiol, P., Maussion, C., Moarii, M., Pronier, E., Pilcer, S., Sefta, M. et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat. Med. https://doi.org/10.1038/s41591-019-0583-3 (2019). DOI: https://doi.org/10.1038/s41591-019-0583-3

Muhammad, H., Sigel, C. S., Campanella, G., Boerner, T., Pak, L. M., Büttner, S. et al. Towards unsupervised cancer subtyping: predicting prognosis using a histologic visual dictionary. Preprint at http://arxiv.org/abs/1903.05257 (2019).

Bychkov, D., Linder, N., Turkki, R., Nordling, S., Kovanen, P. E., Verrill, C. et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci. Rep. 8, 3395 (2018). DOI: https://doi.org/10.1038/s41598-018-21758-3

Kulkarni, P. M., Robinson, E. J., Sarin Pradhan, J., Gartrell-Corrado, R. D., Rohr, B. R., Trager, M. H. et al. Deep learning based on standard H&E images of primary melanoma tumors identifies patients at risk for visceral recurrence and death. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-19-1495 (2019). DOI: https://doi.org/10.1158/1078-0432.CCR-19-1495

Echle, A., Rindtorff, N.T., Brinker, T.J. et al. Deep learning in cancer pathology: a new generation of clinical biomarkers. Br J Cancer 124, 686–696 (2021). https://doi.org/10.1038/s41416-020-01122-x DOI: https://doi.org/10.1038/s41416-020-01122-x

Published

15-05-2023

How to Cite

Alatawi, S. S., Hadadi, A. M., Almulhim, M. M., Almousa, M. M. A., Alkhathami , A. A., Alqahtani, B. M., Almuhaysh, M. A. ., Alsadun, J. S., Otaif, M. I. M., Almulhim, L. Y., & Alanazi, A. M. (2023). Pathology and clinical practice: A review of the latest diagnostic techniques and tools in cancer diagnosis. International Journal of Health Sciences, 7(S1), 3435–3449. https://doi.org/10.53730/ijhs.v7nS1.15110

Issue

Section

Peer Review Articles

Most read articles by the same author(s)