Local decomposer increase composting rate and produce quality rice straw compost

https://doi.org/10.29332/ijls.v3n1.273

Authors

  • I Nengah Muliarta Doctorate Student Program of Agricultural Science, Faculty of Agriculture, Udayana University, Jl. PB. Sudirman, Denpasar, Bali.
  • I Gusti Ayu Mas Sri Agung Lecturer in Doctorate Program of Agricultural Science, Faculty of Agriculture, Udayana University, Jl. PB. Sudirman, Denpasar, Bali.
  • I Made Adnyana Lecturer in Doctorate Program of Agricultural Science, Faculty of Agriculture, Udayana University, Jl. PB. Sudirman, Denpasar, Bali.
  • I Wayan Diara Lecturer in Doctorate Program of Agricultural Science, Faculty of Agriculture, Udayana University, Jl. PB. Sudirman, Denpasar, Bali.

Keywords:

compost quality, composting rate, enumeration, local decomposer, rice straw

Abstract

This study at aiming to examine the ability of Balinese local decomposers in composting rice straw. Another goal is to examine the composting rate and quality of compost in enumeration rice straw that is not enumerated. The study used 2 combinations of local decomposers and comparative decomposers. The local decomposer 1 combination consists of Paenibacillus polimyxa, Pseudomonas flourescens, and Trichoderma hazianum. The combination of local decomposers 2 consists of Pseudomonas flourescens, Trichoderma hazianum, and Aspergilus niger. Comparative decomposers are commercial decomposers consists of Azospirillum, Aspergillus, Actinomycetes, Lactobacillus, Pseudomonas, and yeast. The study was conducted in Tangkas Village, Klungkung on June 17 up to July 23, 2017. The study used a Randomized Block Design (RBD) with 3 (three) replications. Composting is conducted for 35 days and compost reversal is conducted every 7 days. The results showed that the addition of local decomposer 1 was able to provide a C/N ratio of up to 13.78, local decomposers 2 to 14.80 and this result was not significantly different from the comparison decomposition C/N ratio which reached 15.31.

Downloads

Download data is not yet available.

References

Adawiyah, S. R., & Mustari, K. (2017). Aplikasi isolat bakteri dari tpa tamangapa makassar dalam proses pengomposan sampah organik rumah tangga. celebes biodiversitas, 1(1). http://ojs.stkippi.ac.id/index.php/CB/article/view/97

Alemu, F. (2013). Isolation of Pseudomonas fluorescens from rhizospheric soil of faba bean and assessment of their Phosphate solubility: in vitro study, Ethiopia. Scholars academic journal of biosciences, 1(7), 346-351.

Alsanius, B. W., Blok, C., Cuijpers, W. J., França, S. C., Fuchs, J. G., Janmaat, L., ... & van der Wurff, A. W. (2016). Handbook for composting and compost use in organic horticulture. BioGreenhouse COST Action FA 1105. http://orgprints.org/30598/

Ameen, A., Ahmad, J., & Raza, S. (2016). Effect of pH and moisture content on composting of Municipal solid waste. International Journal of Scientific and Research Publications, 6(5), 35-37. https://pdfs.semanticscholar.org/8598/6be83e3483ce72c5d51f5de7a7cdf492c2ff.pdf

Atalia, K. R., Buha, D. M., Bhavsar, K. A., & Shah, N. K. (2015). A review on composting of municipal solid waste. Journal of Environmental Science, Toxicology and Food Technology, 9, 20-29. https://pdfs.semanticscholar.org/69d3/625bf8871f0cd7b7f6c4de8650bcab8a9b2a.pdf

Aziz, R. A. (2018). Composting Technology and Impact of Compost on Arid Soil Biochemical Properties. http://www.sciencedomain.co/index.php/IJPSS/article/view/2408/4077

Bending, G. D., & Turner, M. K. (1999). Interaction of biochemical quality and particle size of crop residues and its effect on the microbial biomass and nitrogen dynamics following incorporation into soil. Biology and fertility of soils, 29(3), 319-327. https://link.springer.com/article/10.1007/s003740050559

Binod, P., Sindhu, R., Singhania, R. R., Vikram, S., Devi, L., Nagalakshmi, S., ... & Pandey, A. (2010). Bioethanol production from rice straw: an overview. Bioresource technology, 101(13), 4767-4774. https://doi.org/10.1016/j.biortech.2009.10.079

Bishop, P. L. (1983). Nitrogen variations during sludge composting. Biocycle, 24, 34-39. https://ci.nii.ac.jp/naid/80001726591/

Breitenbeck, G. A., & Schellinger, D. (2004). Calculating the reduction in material mass and volume during composting. Compost science & utilization, 12(4), 365-371. https://doi.org/10.1080/1065657X.2004.10702206

Brewer, L. J., & Sullivan, D. M. (2001). A quick look at quick compost stability tests. BioCycle, 42(1), 53-53. https://elibrary.ru/item.asp?id=6138421

Chan, E. S., Rudravaram, R., Narasu, M. L., Rao, L. V., & Ravindra, P. (2007). Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnology and Molecular Biology Reviews, 2(1), 14-32. http://www.academicjournals.org/journal/BMBR/article-full-text-pdf/3B685B910909

Chandna, P., Nain, L., Singh, S., & Kuhad, R. C. (2013). Assessment of bacterial diversity during composting of agricultural byproducts. BMC microbiology, 13(1), 99. https://bmcmicrobiol.biomedcentral.com/articles/10.1186/1471-2180-13-99

Chheda, R., Verma, S., & Nihar, D. (2016). Bio-Activator as a Solution of Biological Treatment Problems in Dairy Industries. Global Research and Development Journal for Engineering, March 2016: 103–105.

Cooperband, L. R. (2000). Composting: art and science of organic waste conversion to a valuable soil resource. Laboratory Medicine, 31(5), 283-290. https://doi.org/10.1309/W286-LQF1-R2M2-1WNT

Croyal, S., & Sindhu, S. S. (2011). Composting of rice straw using different inocula and analysis of compost quality. M_icrobiol. J, 1, 126-138. http://docsdrive.com/pdfs/academicjournals/mj/0000/34054-34054.pdf

de Bertoldi, M. D., Vallini, G. E., & Pera, A. (1983). The biology of composting: a review. Waste Management & Research, 1(2), 157-176. https://www.sciencedirect.com/science/article/pii/0734242X83900551

Dhal, G. C., Singh, W. R., Khwairakpam, M., & Kalamdhad, A. S. (2012). Composting of water hyacinth using saw dust/rice straw as a bulking agent. International journal of environmental sciences, 2(3), 1223-1238. http://www.indianjournals.com/ijor.aspx?target=ijor:ijes&volume=2&issue=3&article=007

Dilly, O., Bloem, J., Vos, A., & Munch, J. C. (2004). Bacterial diversity in agricultural soils during litter decomposition. Appl. Environ. Microbiol., 70(1), 468-474. https://aem.asm.org/content/70/1/468.short

Erses, A. S., Onay, T. T., & Yenigun, O. (2008). Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresource technology, 99(13), 5418-5426. https://www.sciencedirect.com/science/article/pii/S0960852407009327

Gaind, S., & Nain, L. (2011). Soil health in response to bio-augmented paddy straw compost. World J Agri Sci, 7(480), e8. https://pdfs.semanticscholar.org/461f/3d9c1137d50efd880e9681fbe60af671d1c3.pdf

Goyal, S., Singh, D., Suneja, S., & Kapoor, K. K. (2009). Effect of rice straw compost on soil microbiological properties and yield of rice. Indian Journal of Agricultural Research, 43(4). https://pdfs.semanticscholar.org/7b8e/6df3a6508e0e0ffacb1747034976e0fc48b0.pdf

Harada, Y., Inoko, A., Tadaki, M., & Izawa, T. (1981). Maturing process of city refuse compost during piling. Soil science and plant nutrition, 27(3), 357-364. https://doi.org/10.1080/00380768.1981.10431290

Herity, L. (2003). A study of the quality of waste derived compost in Ireland. Degree of Master of Science in Environmental Engineering, Queens University of Belfast, pp140. http://cre.ie/docs/quality_wastederived_compost160104.pdf

Hongoh, Y., & Toyoda, A. (2011). Whole-genome sequencing of unculturable bacterium using whole-genome amplification. In High-Throughput Next Generation Sequencing (pp. 25-33). Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-089-8_2

Kadir, A. A., Azhari, N. W., & Jamaludin, S. N. (2017). Evaluation of physical, chemical and heavy metal concentration of food waste composting. In MATEC Web of Conferences (Vol. 103, p. 05014). EDP Sciences. https://www.matec-conferences.org/articles/matecconf/abs/2017/17/matecconf_iscee2017_05014/matecconf_iscee2017_05014.html

Kalatzi, E., Sazakli, E., Karapanagioti, H. K., & Leotsinidis, M. Composting of brewery sludge mixed with different bulking agents. http://uest.ntua.gr/

Kapri, A., & Tewari, L. (2010). Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Brazilian Journal of Microbiology, 41(3), 787-795. http://www.scielo.br/scielo.php?pid=S1517-83822010005000001&script=sci_arttext&tlng=pt

Lal, S., & Tabacchioni, S. (2009). Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian Journal of Microbiology, 49(1), 2-10. https://doi.org/10.1007/s12088-009-0008-y

Larney, F. J., Olson, A. F., Carcamo, A. A., & Chang, C. (2000). Physical changes during active and passive composting of beef feedlot manure in winter and summer. Bioresource Technology, 75(2), 139-148. https://doi.org/10.1016/S0960-8524(00)00040-7

Lee, Y. (2016). Various microorganisms’ roles in composting: A review. APEC Youth Scientist Journal. 8: 11, 15. http://amgs.or.kr/New/common/journal/vol8/vol8_1_no.2.pdf

Liu, D., Lian, B., & Dong, H. (2012). Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiology Journal, 29(5), 413-421. https://doi.org/10.1080/01490451.2011.576602

Lok, C. (2015). Mining the microbial dark matter. Nature News, 522(7556), 270. https://doi.org/10.1038/522270a

Lopes-Assad, M. L., Avansini, S. H., Rosa, M. M., De Carvalho, J. R., & Ceccato-Antonini, S. R. (2010). The solubilization of potassium-bearing rock powder by Aspergillus niger in small-scale batch fermentations. Canadian journal of microbiology, 56(7), 598-605. http://www.nrcresearchpress.com/doi/abs/10.1139/w10-044

Makan, A., Assobhei, O., & Mountadar, M. (2013). Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco. Iranian journal of environmental health science & engineering, 10(1), 3. https://doi.org/10.1186/1735-2746-10-3

Matthews, S., & Kamal, E. A. (2015). Identification of rice straw degrading microbial consortium. Journal of Tropical Agriculture and Food Science, 43, 119-127. https://www.researchgate.net/profile/Stella_Matthews/publication/313769992

Michel Jr, F. C., Pecchia, J. A., Rigot, J., & Keener, H. M. (2004). Mass and nutrient losses during the composting of dairy manure amended with sawdust or straw. Compost Science & Utilization, 12(4), 323-334. https://doi.org/10.1080/1065657X.2004.10702201

Mitri, S., & Richard Foster, K. (2013). The genotypic view of social interactions in microbial communities. Annual review of genetics, 47, 247-273. https://www.annualreviews.org/doi/abs/10.1146/annurev-genet-111212-133307

Nazhad, M. M., Ramos, L. P., Paszner, L., & Saddler, J. N. (1995). Structural constraints affecting the initial enzymatic hydrolysis of recycled paper. Enzyme and microbial technology, 17(1), 68-74. https://doi.org/10.1016/0141-0229(94)00057-X

Nur, H. S., & Meryandini, A. (2009). Pemanfaatan Bakteri Selulolitik dan Xilanolitik yang Potensial untuk Dekomposisi Jerami Padi. Jurnal Tanah Tropika, 14(1), 71-80. https://www.ingentaconnect.com/content/doaj/0852257x/2009/00000014/00000001/art00010

Nuraini. (2009). Pembuatan Kompos Jerami Menggunakan Mikroba Perombak Bahan Organik. Buletin Teknik Pertanian, 14 (1): 23-26.

Olson, J. S. (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44(2), 322-331. https://doi.org/10.2307/1932179

Otieno, N., Lally, R. D., Kiwanuka, S., Lloyd, A., Ryan, D., Germaine, K. J., & Dowling, D. N. (2015). Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology, 6, 745. https://doi.org/10.3389/fmicb.2015.00745

Palanivell, P., Susilawati, K., Ahmed, O. H., & Majid, N. M. (2013). Compost and crude humic substances produced from selected wastes and their effects on Zea mays L. nutrient uptake and growth. The Scientific World Journal, 2013. http://dx.doi.org/10.1155/2013/276235

Parmar, K. B., Mehta, B. P., & Kunt, M. D. (2016). Isolation, characterization and identification of potassium solubilizing bacteria from rhizosphere soil of maize (Zea mays). Int J Sci Env Technol, 5(5), 3030-3037. http://www.ijset.net/journal/1259.pdf

Peraturan Menteri Pertanian Nomor 70/Permentan/SR.140/10/2011 Tentang Pupuk Organik, Pupuk Hayati Dan Pembenah Tanah.

Ponnamperuma, F. (1984). Straw as a source of nutrients for wetland rice; Organic matter and rice. International Rice Research Institute, Manila, Philippines, 117-136.

Rishell, E. (2013). Backyard Composting.Virginia Cooperative Extension-Publication Hort-49P. Virginia Polytechnic Institute and State University.

Roman, P., Martinez, M. M., & Pantoja, A. (2015). Farmer’s Compost Handbook: Experiences in Latin America. FAO Rome. ISBN: 978–92–5-107845-7.

Sadik, M. W., El Shaer, H. M., & Yakot, H. M. (2010). Recycling of agriculture and animal farm wastes into compost using compost activator in Saudi Arabia. J. Int. Environ. Appl. Sci, 5(3), 397-403. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.303.82&rep=rep1&type=pdf

Saini, J. K., Saini, R., & Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech, 5(4), 337-353. https://doi.org/10.1007/s13205-014-0246-5

Salih, H. M., Yahya, A. I., Abdul-Rahem, A. M., & Munam, B. H. (1989). Availability of phosphorus in a calcareous soil treated with rock phosphate or superphosphate as affected by phosphate-dissolving fungi. Plant and soil, 120(2), 181-185. https://doi.org/10.1007/BF02377067

Sari, S. V., Qayim, I., & Hilwan, I. (2016). Litter Decomposition Rate of Karst Ecosystem at Gunung Cibodas, Ciampea Bogor Indonesia. Journal of Tropical Life Science, 6(2), 107-112. http://www.jtrolis.ub.ac.id/index.php/jtrolis/article/view/572

Sarwar, G., Hussain, N., Schmeisky, H., Muhammad, S., Ibrahim, M., & Safdar, E. (2007). Use of compost an environment friendly technology for enhancing rice-wheat production in Pakistan. Pak. J. Bot, 39(5), 1553-1558. http://www.pakbs.org/pjbot/PDFs/39(5)/PJB39(5)1553.pdf

Sethi, S., Datta, A., Gupta, B. L., & Gupta, S. (2013). Optimization of cellulase production from bacteria isolated from soil. ISRN biotechnology, 2013. http://downloads.hindawi.com/journals/isrn.biotechnology/2013/985685.pdf

Shruti, A. S., & Malik, D. K. (2015). Lignocellulose biomass degradation by microbial consortium isolated from harvested rice field. Int. J. Curr. Microbiol. App. Sci, 4(9), 274-280. https://pdfs.semanticscholar.org/db0b/1bcd6f8bf604469fce14e032bb18223166a5.pdf

Sirisena, D. M., & Manamendra, T. P. (1995). Isolation and characterization of cellulolytic bacteria from decomposing rice straw. Journal of the National Science Foundation of Sri Lanka, 23(1). https://www.researchgate.net/profile/Dassanayake_Sirisena/publication/237482373

Sitepu, R. B., Anas, I., & Djuniwati, S. (2017). Pemanfaatan Jerami Sebagai Pupuk Organik Untuk Meningkatkan Pertumbuhan Dan Produksi Padi (Oryza sativa). Buletin Tanah dan Lahan, 1(1), 100-108. http://jagb.journal.ipb.ac.id/index.php/btanah/article/view/17698

Sondang, Y., Anty, K., & Alfina, R. (2014). The Influence of Bioactivator Cattle Feces Against The Length of Composting and C/N Ratio from Three Kind of Organic Material. International Journal on Advanced Science, Engineering and Information Technology, 4(4), 278-281. http://dx.doi.org/10.18517/ijaseit.4.4.416

Stewart, E. J. (2012). Growing unculturable bacteria. Journal of bacteriology, 194(16), 4151-4160. http://dx.doi.org/10.1128/JB.00345-12

Streminska, M. A., & Raviv, M. (2016). 3 Microbiology of the composting process. Handbook for Composting and Compost Use in Organic Horticulture, 45. https://library.wur.nl/WebQuery/wurpubs/fulltext/375218#page=45

Strom, P. F., & Finstein, M. S. (1994). New Jersey's Manual on Composting Leaves and Management of other Yard Trimmings. Department of Environmental Sciences, Cook College, New Jersey Agricultural Experiment Station, Rutgers University.

Sundberg, C. (2005). Improving compost process efficiency by controlling aeration, temperature and pH (Vol. 2005, No. 103). http://pub.epsilon.slu.se/id/document/650

Tallapragada, P., & Gudimi, M. (2011). Phosphate solubility and biocontrol activity of Trichoderma harzianum. Turkish journal of Biology, 35(5), 593-600. https://journals.tubitak.gov.tr/biology/abstract.htm?id=11990

Tiquia, S. M., Richard, T. L., & Honeyman, M. S. (2002). Carbon, nutrient, and mass loss during composting. Nutrient Cycling in Agroecosystems, 62(1), 15-24. https://doi.org/10.1023/A:1015137922816

Tsigarida, E., Boziaris, I. S., & Nychas, G. J. E. (2003). Bacterial synergism or antagonism in a gel cassette system. Appl. Environ. Microbiol., 69(12), 7204-7209. https://doi.org/10.1128/AEM.69.12.7204-7209.2003

Tuomela, M., Vikman, M., Hatakka, A., & Itävaara, M. (2000). Biodegradation of lignin in a compost environment: a review. Bioresource technology, 72(2), 169-183. https://doi.org/10.1016/S0960-8524(99)00104-2

Wang, C. T., Lee, Y. C., & Liao, F. Y. (2015). Effect of composting parameters on the power performance of solid microbial fuel cells. Sustainability, 7(9), 12634-12643. https://doi.org/10.3390/su70912634

Watanabe, T., Man, L. H., Vien, D. M., Khang, V. T., Ha, N. N., Linh, T. B., & Ito, O. (2009). Effects of continuous rice straw compost application on rice yield and soil properties in the Mekong Delta. Soil science and plant nutrition, 55(6), 754-763. https://doi.org/10.1111/j.1747-0765.2009.00424.x

Weselowski, B., Nathoo, N., Eastman, A. W., MacDonald, J., & Yuan, Z. C. (2016). Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC microbiology, 16(1), 244. https://doi.org/10.1186/s12866-016-0860-y

Wichuk, K. M., & McCartney, D. (2010). Compost stability and maturity evaluation—a literature review. Canadian Journal of Civil Engineering, 37(11), 1505-1523. https://doi.org/10.1139/L10-101

Wu, D. L., Liu, P., Luo, Y. Z., Tian, G. M., & Mahmood, Q. (2010). Nitrogen transformations during co-composting of herbal residues, spent mushrooms, and sludge. Journal of Zhejiang University SCIENCE B, 11(7), 497-505. https://doi.org/10.1631/jzus.B0900271

Yaacob, S. Z., Abdullah, N., & Abdullah, L. C. Potential of trichoderma harzianum as cellulose biodegrader in biocomposting of paddy straw. http://www.akademiabaru.com/doc/ARMSV39_N1_P8_13.pdf

Zhao, H., Yu, H., Yuan, X., Piao, R., Li, H., Wang, X., & Cui, Z. (2014). Degradation of lignocelluloses in rice straw by BMC-9, a composite microbial system. J. Microbiol. Biotechnol, 24(5), 585-591. https://pdfs.semanticscholar.org/2dd6/d2b8e068d3a6cfe067dd28b4761ded75e33f.pdf

Published

2019-04-09

How to Cite

Muliarta, I. N., Agung, I. G. A. M. S., Adnyana, I. M., & Diara, I. W. (2019). Local decomposer increase composting rate and produce quality rice straw compost. International Journal of Life Sciences, 3(1), 56–70. https://doi.org/10.29332/ijls.v3n1.273

Issue

Section

Research Articles