Design and construction of an industrial ship conditioning system

https://doi.org/10.29332/ijpse.v4n1.423

Authors

  • Ricardo Fabricio Muñoz Farfán Instituto Superior Tecnológico Paulo Emilio Macías, Portoviejo, Ecuador
  • Telly Yarita Macías Zambrano Instituto Superior Tecnológico Paulo Emilio Macías, Portoviejo, Ecuador
  • Fausto Roberto Andrade Badillo Instituto Superior Tecnológico Paulo Emilio Macías, Portoviejo, Ecuador
  • Adrián Adalberto Hernández Solís Instituto Superior Tecnológico Paulo Emilio Macías, Portoviejo, Ecuador

Keywords:

conditioning, efficiency energetic, evaporative, productive performance, thermal comfort

Abstract

This project is based on the design and construction of an industrial air conditioning system for the improvement of the working thermal comfort of workers that for various reasons there is the trend of the increase in body temperature are these by machines, equipment or the same work activities, which affects the productive performance and possible health risks. During development, the selection of mechanical equipment such as the fan, water pump, ventilation transport ducts is studied with high rates of energy efficiency. In the light of the above, the environmental economic partner alternative is chosen to implement the evaporative conditioning system, conducive to working in open places to lower the temperature by labor and technology installed in the production areas, as well as the extraction of fumes derived from production processes. The importance of the evaporative conditioning system is to derive the appropriate mechanisms to take advantage of the surface heat transfer of a panel and copper and aluminum coil using water, and thus take advantage of its temperature differential reaching 25oC, with an average humidity of 66% and energy consumption of 0.29 KW/h.

Downloads

Download data is not yet available.

References

Acero comercial del Ecuador S.A. (2019, enero 15). Acero comercial del Ecuador.

ACR latino América. (2019). acrlatinoamerica.com. Arduino Corporation. (2019).

Company, B. d. (2016). Enfriadores evaporativos. From Biocool de termigo: www.biocool.es

Farfán, R. F. M., Zambrano, T. Y. M., Valencia, V. P. Z., & Sosa, V. M. D. (2019). Design and construction of a cold production simulator system: chiller. International Journal of Physical Sciences and Engineering, 3(3), 31-40. https://doi.org/10.29332/ijpse.v3n3.367

Flores, M. (2011). Acondicionamiento de espacios con enfriamiento evaporativo. Ingenieria mecánica - tecnológica, 4(1).

Flores, M., Hernández, R., Rey, M., Velasco, G., & Tejero, G. (2011). Acondicionamiento de espacios con Enfriamiento Evaporativo mediante ladrillos cerámicos. Ingeniería mecánica, tecnología y desarrollo, 4(1), 001-014.

Hanus, R., Kinnaert, M., & Henrotte, J. L. (1987). Conditioning technique, a general anti-windup and bumpless transfer method. Automatica, 23(6), 729-739. https://doi.org/10.1016/0005-1098(87)90029-X

Hidalgo, D. B., & Guerra, Y. P. (2016). Eficiencia energética en la climatización de edificaciones. Revista Publicando, 3(8), 218-238.

IESS, I. E. (1986). Decreto Ejecutivo 2393. Reglamento de seguridad y slud de los trabajadores y mejoramiento del medio ambiente de trabajo. Quito, Pichincha, Ecuador: Suplemento del Registro Oficial No.

Kinsara, A. A., Elsayed, M. M., & Al-Rabghi, O. M. (1996). Proposed energy-efficient air-conditioning system using liquid desiccant. Applied Thermal Engineering, 16(10), 791-806. https://doi.org/10.1016/1359-4311(95)00090-9

Kuznik, F., Virgone, J., & Roux, J. J. (2008). Energetic efficiency of room wall containing PCM wallboard: A full-scale experimental investigation. Energy and buildings, 40(2), 148-156. https://doi.org/10.1016/j.enbuild.2007.01.022

Martens, A. (1998). The energetic feasibility of CHP compared to the separate production of heat and power. Applied thermal engineering, 18(11), 935-946. https://doi.org/10.1016/S1359-4311(98)00026-X

Nicol, J. F., & Humphreys, M. A. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and buildings, 34(6), 563-572. https://doi.org/10.1016/S0378-7788(02)00006-3

Olivares, A. (2017). Energy security in the European Union: a model to imitate?. International Studies (Santiago), 49 (187), 43-84. http://dx.doi.org/10.5354/0719-3769.2017.47027

Özdil, N., Marmaral?, A., & Kretzschmar, S. D. (2007). Effect of yarn properties on thermal comfort of knitted fabrics. International journal of Thermal sciences, 46(12), 1318-1322. https://doi.org/10.1016/j.ijthermalsci.2006.12.002

Puteh, M., Ibrahim, M. H., Adnan, M., Che’Ahmad, C. N., & Noh, N. M. (2012). Thermal comfort in classroom: constraints and issues. Procedia-Social and behavioral sciences, 46, 1834-1838. https://doi.org/10.1016/j.sbspro.2012.05.388

Sharma, M. R., & Ali, S. (1986). Tropical summer index—a study of thermal comfort of Indian subjects. Building and Environment, 21(1), 11-24. https://doi.org/10.1016/0360-1323(86)90004-1

Sun, D. W. (1997). Solar powered combined ejector-vapour compression cycle for air conditioning and refrigeration. Energy Conversion and Management, 38(5), 479-491. https://doi.org/10.1016/S0196-8904(96)00063-5

Sun, Z. G., Wang, R. Z., & Sun, W. Z. (2004). Energetic efficiency of a gas-engine-driven cooling and heating system. Applied thermal engineering, 24(5-6), 941-947. https://doi.org/10.1016/j.applthermaleng.2003.10.014

Published

2020-04-30

How to Cite

Farfán, R. F. M., Zambrano, T. Y. M., Badillo, F. R. A., & Solís, A. A. H. (2020). Design and construction of an industrial ship conditioning system. International Journal of Physical Sciences and Engineering, 4(1), 29–38. https://doi.org/10.29332/ijpse.v4n1.423

Issue

Section

Peer Review Articles

Most read articles by the same author(s)