Quality management of electricity service with photovoltaic generation distributed in rural area

https://doi.org/10.29332/ijpse.v4n1.424

Authors

  • Gino Joaquín Mieles Universidad Técnica de Manabí, Portoviejo, Ecuador
  • Alcira Magdalena Vélez Quiroz Universidad Técnica de Manabí, Portoviejo, Ecuador
  • Ciaddy Gina Rodríguez Borges Universidad Técnica de Manabí, Portoviejo, Ecuador
  • Antonio Vázquez Pérez Universidad Técnica de Manabí, Portoviejo, Ecuador

Keywords:

distribute generation, local development, photovoltaic, rural electrification, sustainable

Abstract

The need to search for new energy models that are integrally sustainable for the present and the future, especially photovoltaic solar energy that would contribute to a radical change in Manabí Ecuador where populations are living in rural areas away from the electricity grid, which causes impacts negative economic and in some rural electrification projects, and low quality have oriented national policies towards the search for the best alternatives, such as renewable sources, that is, the efficient use of resources and the increase in reliability, coverage, and quality in the electrical supply that Manabí has. Emphasizing "good living" as an objective of the Ecuadorian government, meeting its needs for the development of its agricultural, artisanal, commercial and industrial activities. Thus, avoiding that due to lack or poor quality of energy that prevents them from being able to carry out an activity typical of the countryside or rural areas, these people migrate to the cantonal headwaters, further thickening the cords of misery. The work presents an analysis on the quality of the electric service in isolated areas of the Chone municipality, proposing solutions that can improve the quality of the service, through sustainable energy planning using indigenous resources from the territory.

Downloads

Download data is not yet available.

References

Akbarzadeh, A., & Wadowski, T. (1996). Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation. Applied thermal engineering, 16(1), 81-87. https://doi.org/10.1016/1359-4311(95)00012-3

Arauz, W. M. S., Gámez, M. R., Pérez, A. V., Castillo, G. A. L., & Alava, L. A. C. (2017). The future of micro-grids in Ecuador. International journal of physical sciences and engineering, 1(3), 1-8. https://doi.org/10.21744/ijpse.v1i3.53

Bayod-Rújula, A. A. (2009). Future development of the electricity systems with distributed generation. Energy, 34(3), 377-383. https://doi.org/10.1016/j.energy.2008.12.008

Borges, C. L., & Falcao, D. M. (2006). Optimal distributed generation allocation for reliability, losses, and voltage improvement. International Journal of Electrical Power & Energy Systems, 28(6), 413-420. https://doi.org/10.1016/j.ijepes.2006.02.003

Briskman, R. N. (1992). A study of electrodeposited cuprous oxide photovoltaic cells. Solar Energy Materials and Solar Cells, 27(4), 361-368. https://doi.org/10.1016/0927-0248(92)90097-9

Delgado López, S. E., & Villaprado Mejía, M. V. (2018). Estudio Del Manejo Postcosecha De La Naranja En El Sitio Daca 1 De La Parroquia Boyacá Del Cantón Chone (Doctoral dissertation).

Gámez, MR, Pérez, AV, Quiroz, AMV, & Arauz, WMS (2018). Improving the quality of energy with photovoltaic systems in rural areas. Scientific journal , 3 (33), 265-274. https://doi.org/10.14483/23448350.13104

García Serrano, F. (2014). Territorialidad y autonomía, proyectos minero-energéticos y consulta previa: el caso de los pueblos indígenas de la Amazonía ecuatoriana. Anthropologica, 32(32), 71-85.

González, A. E. D., Arauz, W. M. S., Gámez, M. R., & Alava, L. A. C. (2017). Photovoltaic energy to face an earthquake. International journal of physical sciences and engineering, 1(3), 19-30. https://doi.org/10.21744/ijpse.v1i3.61

Hernández Mora, JA (2012). Methodology for the technical analysis of the massification of photovoltaic systems as an option for distributed generation in low-voltage networks. Electrical Engineering.

Kamalapur, G. D., & Udaykumar, R. Y. (2011). Rural electrification in India and feasibility of photovoltaic solar home systems. International Journal of Electrical Power & Energy Systems, 33(3), 594-599. https://doi.org/10.1016/j.ijepes.2010.12.014

Lopes, J. P., Hatziargyriou, N., Mutale, J., Djapic, P., & Jenkins, N. (2007). Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities. Electric power systems research, 77(9), 1189-1203. https://doi.org/10.1016/j.epsr.2006.08.016

Niknam, T., Ranjbar, A. M., & Shirani, A. R. (2003). Volt/Var control in distribution networks with distributed generation. IFAC Proceedings Volumes, 36(20), 547-552. https://doi.org/10.1016/S1474-6670(17)34526-3

Rappaport, P. (1959). The photovoltaic effect and its utilization. Solar Energy, 3(4), 8-18. https://doi.org/10.1016/0038-092X(59)90002-7

Rodríguez Borges, CG, Sarmiento Sera, A., & Rodríguez Gámez, M. (2015). Model for the comprehensive assessment of rural electrification technologies. Energy Engineering, 36 (2), 136-145.

Rodríguez, M., & Mendoza, H. (2018). Falta de alumbrado público y su repercusión en la seguridad de los habitantes del sector San Felipe del cantón Portoviejo. REVISTA RIEMAT, 3(1), 30-34.

Rodríguez, M., & Vazquez, A. (2018). La energía fotovoltaica en la provincia de Manabí. Portoviejo: UTM.

Saheb-Koussa, D., Haddadi, M., & Belhamel, M. (2009). Economic and technical study of a hybrid system (wind–photovoltaic–diesel) for rural electrification in Algeria. Applied Energy, 86(7-8), 1024-1030. https://doi.org/10.1016/j.apenergy.2008.10.015

Senplades, S. N. (2009). Plan nacional para el Buen Vivir 2009-2013. Quito: SENPLADES, 14.

Vázquez, A., Rodríguez, M., Saltos, W., Rodríguez, C., & Cuenca, L. (2018). Rendimiento energético, económico y ambiental de una Central Fotovoltaica de 3,4 KWp en el modo de la generación distribuida (GD). Espacios, 39(47), 34. Obtenido de Rendimiento energético, económico y ambiental de una Central Fotovoltaica de 3,4 KWp en el modo de la generación distribuida (GD)

Wamukonya, N., & Davis, M. (2001). Socio-economic impacts of rural electrification in Namibia: comparisons between grid, solar and unelectrified households. Energy for sustainable development, 5(3), 5-13. https://doi.org/10.1016/S0973-0826(08)60272-0

Published

2020-04-30

How to Cite

Mieles, G. J., Quiroz, A. M. V., Borges, C. G. R., & Pérez, A. V. (2020). Quality management of electricity service with photovoltaic generation distributed in rural area. International Journal of Physical Sciences and Engineering, 4(1), 39–44. https://doi.org/10.29332/ijpse.v4n1.424

Issue

Section

Peer Review Articles

Most read articles by the same author(s)