Effect of x-ray tube voltage variation to value of contrast to noise ratio (CNR) on computed tomography (CT) Scan at RSUD Bali Mandara

https://doi.org/10.53730/ijpse.v6n2.9656

Authors

  • Pingki Setyowati Dewi Udayana University, Denpasar, Indonesia
  • Ni Nyoman Ratini Udayana University, Denpasar, Indonesia
  • Ni Luh Putu Trisnawati Udayana University, Denpasar, Indonesia

Keywords:

contrast to noise ratio, CT Scan, exposure factor, image quality, X-ray tube voltage

Abstract

Research has been conducted on the effect of variations in X-ray tube voltage to value of Contrast to Noise Ratio (CNR) on CT Scan at Bali Mandara Hospital using a phantom as a patient replacement. This research aims to determine the effect of X-ray tube voltage to the CNR value. Exposure factors used are X-ray tube voltage with variations of 80, 110, 120 and 135 kV, constant X-ray tube current of 150 mA and constant exposure time of 1 s. The readings of Io, Ib, and sb values in phantom images were performed using RadiAnt DICOM Viewer software (64 bit) and analysis of the effect X-ray tube voltage on CNR values was determined by regression test. The results of the analysis show that the variation of the X-ray tube voltage has a significant effect on the CNR value, where the greater X-ray tube voltage, the greater the CNR value. When the X-ray tube voltage is adjusted to 135 kV, the optimal CNR values are 113.52 for air, 35.06 for derlin, 13.93 for acrylic, 10.44 for nylon and 12.19 for polypropylene.

Downloads

Download data is not yet available.

References

Afifi, M. B., Abdelrazek, A., Deiab, N. A., Abd El-Hafez, A. I., & El-Farrash, A. H. (2020). The effects of CT x-ray tube voltage and current variations on the relative electron density (RED) and CT number conversion curves. Journal of Radiation Research and Applied Sciences, 13(1), 1-11. https://doi.org/10.1080/16878507.2019.1693176

Bequet, A. Y., Rusyadi, L., & Fatimah, F. (2020). Nilai Contrast to Noise Ratio (CNR) Radiograf Thorax PA antara menggunakan Grid dengan tanpa Menggunakan Grid. Jurnal Imejing Diagnostik (JImeD), 6(2), 60-64.

Bontrager, K. (2014). Textbook of Radiographic Positioning and Related Anatomy (8th Editio). China: Elsevier Mosby.

Bourne, R. (2009). Fundamentals of Digital Imaging in Medicine. New York, Springer London Dordrecht Heidelberg.

Bushberg, J.T., Seibert, J.A., Leidholt, E.M., & Boone, J.M. (2013). The Essential Physics of Medical Imaging Third Edition. USA, Williams and Wilkins.

Carrol, Q.B. (2000). Radiographic Exposure Processing and Quality Control. USA, Charles C. Thomas.

Dabukke, H. (2017). Pengaruh Perubahan Tegangan Terhadap Kontras Resolusi Pada CT Scan. Jurnal Mutiara Elektromedik, 1(1), 24-33.

Dey, S., Purdon, M., Kirsch, T., Helbich, H., Kerr, K., Li, L., & Zhou, S. (2016). Exposure Factor considerations for safety evaluation of modern disposable diapers. Regulatory toxicology and pharmacology, 81, 183-193. https://doi.org/10.1016/j.yrtph.2016.08.017

Fauber, T.L. (2012). Radiographic Imaging and Exposure Fourth Edition. USA, Commonwealth University.

Ginting, M.D. (2016). Analisis Kualitas Gambar Radiografi pada Pemeriksaan Mammae terhadap Densitas Gambar dan Faktor Eksposi, Medan, Thesis, Sumatera Utara University.

Huda, W., & Abrahams, R. B. (2015). Radiographic techniques, contrast, and noise in x-ray imaging. American Journal of Roentgenology, 204(2), W126-W131.

Hutami, I. A. P. A., Sutapa, G. N., & Paramarta, I. B. A. (2021). Analisis Analisis Pengaruh Slice Thickness Terhadap Kualitas Citra Pesawat CT Scan Di RSUD Bali Mandara. BULETIN FISIKA, 22(2), 77-83.

Irnawati, I. (2018). Studi Dosis Radiasi pada Pemeriksaan CT-Scan Dengan Nilai Computer Tomography Dose Index (CTDI) Di Rumah Sakit Bhayangkara Makassar (Doctoral dissertation, Universitas Islam Negeri Alauddin Makassar).

Keyak, J. H., & Falkinstein, Y. (2003). Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Medical engineering & physics, 25(9), 781-787. https://doi.org/10.1016/S1350-4533(03)00081-X

Kofler, J. M., Yu, L., Leng, S., Zhang, Y., Li, Z., Carter, R. E., & McCollough, C. H. (2015). Assessment of Low-Contrast Resolution for the ACR CT Accreditation Program: What is the Impact of Iterative Reconstruction?. Journal of computer assisted tomography, 39(4), 619.

Liang, X., Jacobs, R., Hassan, B., Li, L., Pauwels, R., Corpas, L., ... & Lambrichts, I. (2010). A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT): Part I. On subjective image quality. European journal of radiology, 75(2), 265-269. https://doi.org/10.1016/j.ejrad.2009.03.042

Liu, L., Liu, B., Huang, H., & Bovik, A. C. (2014). No-reference image quality assessment based on spatial and spectral entropies. Signal processing: Image communication, 29(8), 856-863. https://doi.org/10.1016/j.image.2014.06.006

Nariswari, N. N. (2018). Analisis Variasi Faktor Eksposi Dan Ketebalan Irisan Terhadap Ctdi Dan Kualitas Citra Pada Computed Tomography (Ct) Scan.

Netzelmann, U., & Müller, D. (2020). Modified pulse-phase thermography algorithms for improved contrast-to-noise ratio from pulse-excited thermographic sequences. NDT & E International, 116, 102325. https://doi.org/10.1016/j.ndteint.2020.102325

Ratini, N.N., Yuliara, I.M., Windaryoto. (2020). Anode Heel Effect Application with Step Wedge Against Effect of Signal to Noise Ratio in Computed Radiography. International Journal of Health Sciences, 4 (3), 75-82. https://doi.org/10.29332/ijhs.v4n3.467

Sarma, A., Heilbrun, M. E., Conner, K. E., Stevens, S. M., Woller, S. C., & Elliott, C. G. (2012). Radiation and chest CT scan examinations: what do we know?. Chest, 142(3), 750-760. https://doi.org/10.1378/chest.11-2863

Satwika, L. G. P., Ratini, N. N., & Iffah, M. (2021). Pengaruh Variasi Tegangan Tabung Sinar-X terhadap Signal to Noise Ratio (SNR) dengan Penerapan Anode Heel Effect menggunakan Stepwedge. Buletin Fisika Vol, 22(1), 20-28.

Schauer, D. A., & Linton, O. W. (2009). NCRP report No. 160, ionizing radiation exposure of the population of the United States, medical exposure—are we doing less with more, and is there a role for health physicists?. Health physics, 97(1), 1-5.

Sparzinanda, E., Nehru, Nurhidayah. (2017). Pengaruh Faktor Eksposi terhadap Kualitas Citra Radiografi. Journal Online of Physics, 3(1), 14-22.

Uibu, T., Oksa, P., Auvinen, A., Honkanen, E., Metsärinne, K., Saha, H., ... & Roto, P. (2004). Asbestos exposure as a risk factor for retroperitoneal fibrosis. The Lancet, 363(9419), 1422-1426. https://doi.org/10.1016/S0140-6736(04)16100-X

Utami, N. W. M. S., Ratini, N. N., & Juliantara, I. P. E. (2022). Pengaruh Kombinasi Arus Tabung Sinar-X dan Waktu Eksposi Terhadap Contrast to Noise Ratio (CNR) dengan menggunakan Computed Radiography. Buletin Fisika Vol, 23(1), 26-33.

Varghese, T., Ophir, J., & Krouskop, T. A. (2000). Nonlinear stress-strain relationships in tissue and their effect on the contrast-to-noise ratio in elastograms. Ultrasound in medicine & biology, 26(5), 839-851. https://doi.org/10.1016/S0301-5629(00)00199-X

Yin, W. H., Lu, B., Gao, J. B., Li, P. L., Sun, K., Wu, Z. F., ... & Schoepf, U. J. (2015). Effect of reduced x-ray tube voltage, low iodine concentration contrast medium, and sinogram-affirmed iterative reconstruction on image quality and radiation dose at coronary CT angiography: results of the prospective multicenter REALISE trial. Journal of Cardiovascular Computed Tomography, 9(3), 215-224. https://doi.org/10.1016/j.jcct.2015.01.010

Published

2022-06-24

How to Cite

Dewi, P. S., Ratini, N. N., & Trisnawati, N. L. P. (2022). Effect of x-ray tube voltage variation to value of contrast to noise ratio (CNR) on computed tomography (CT) Scan at RSUD Bali Mandara. International Journal of Physical Sciences and Engineering, 6(2), 82–90. https://doi.org/10.53730/ijpse.v6n2.9656

Issue

Section

Peer Review Articles