Temporal analysis on spectral reflectance of clove vegetation based on landsat 8 imagery

https://doi.org/10.53730/ijpse.v6n1.2940

Authors

  • I Made Yuliara Physics Department, Faculty of Mathematics and Science, Udayana University, Denpasar, Bali, Indonesia
  • Ni Nyoman Ratini Physics Department, Faculty of Mathematics and Science, Udayana University, Denpasar, Bali, Indonesia
  • I Gde Antha Kasmawan Physics Department, Faculty of Mathematics and Science, Udayana University, Denpasar, Bali, Indonesia

Keywords:

clove vegetation, Buleleng Regency, Landsat 8, spectral reflectance, temporal analysis

Abstract

This study aims to analyze temporally the spectral reflectance of clove vegetation using Landsat 8 multitemporal imagery data in Buleleng district, Bali. The analysis method uses the conversion of raw data from Landsat 8 images to the spectral reflectance value at the Top of Atmosphere (TOA). This conversion scales back the pixel values ??of the Landsat 8 image in the visible spectrum, namely bands 2, 3, 4 and infrared bands 5, 6, and 7 into percentage units. The temporal analysis technique is carried out by grouping the time series of Landsat 8 image data for 1 period, in 2015, into 4 quarterly groups based on the acquisition time, namely Quarter I (January, February, March), Quarter II (April, May, June), Quarter III (July, August, September) and Quarter IV (October, November, December). The results showed that the graph pattern of the average percentage of spectral reflectance in each quarter was the same and in the infrared spectrum was greater than the visible spectrum. The average value of the largest spectral reflectance was found in the second Quarter which was acquired by band 5 of 28.143%, while the smallest in the first Quarter which was acquired by band 2 was 2.503%.

Downloads

Download data is not yet available.

References

Abd El-Kawy, O. R., Rød, J. K., Ismail, H. A., & Suliman, A. S. (2011). Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Applied geography, 31(2), 483-494. https://doi.org/10.1016/j.apgeog.2010.10.012

Adams, J. B., & Gillespie, A. R. (2006). Remote sensing of landscapes with spectral images: A physical modeling approach. Cambridge University Press.

Beeri, O., Phillips, R., Hendrickson, J., Frank, A. B., & Kronberg, S. (2007). Estimating forage quantity and quality using aerial hyperspectral imagery for northern mixed-grass prairie. Remote Sensing of Environment, 110(2), 216-225. https://doi.org/10.1016/j.rse.2007.02.027

Broge, N. H., & Mortensen, J. V. (2002). Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote sensing of environment, 81(1), 45-57. https://doi.org/10.1016/S0034-4257(01)00332-7

Chen, J., Lu, M., Chen, X., Chen, J., & Chen, L. (2013). A spectral gradient difference based approach for land cover change detection. ISPRS journal of photogrammetry and remote sensing, 85, 1-12. https://doi.org/10.1016/j.isprsjprs.2013.07.009

Coondoo, D., & Dinda, S. (2008). Carbon dioxide emission and income: A temporal analysis of cross-country distributional patterns. Ecological Economics, 65(2), 375-385. https://doi.org/10.1016/j.ecolecon.2007.07.001

Dinas Kehutanan dan Perkebunan Pemkab Buleleng. (2015). Laporan Triwulan Luas Areal dan Produksi Komoditas Perkebunan Kabupaten Buleleng Tahun 2015.

Elachi, C., & Van Zyl, J. J. (2021). Introduction to the physics and techniques of remote sensing. John Wiley & Sons.

Green, E., Mumby, P., Edwards, A., & Clark, C. (2000). Remote sensing: handbook for tropical coastal management. United Nations Educational, Scientific and Cultural Organization (UNESCO).

Huete, A. R., & Glenn, E. P. (2011). Remote sensing of ecosystem structure and function. Advances in Environmental Remote Sensing. Sensors, Algorithms, and Applications. CRC Press, Boca Raton, Florida, USA, 291-320.

Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote sensing and image interpretation. John Wiley & Sons.

Limin, S. G., Oue, H., Sato, Y., & Budiasa, I. W. (2015). Partitioning rainfall into throughfall, stemflow, and interception loss in Clove (Syzygium aromaticum) plantation in upstream Saba River Basin, Bali. Procedia Environmental Sciences, 28, 280-285. https://doi.org/10.1016/j.proenv.2015.07.036

Myeong, S., Nowak, D. J., & Duggin, M. J. (2006). A temporal analysis of urban forest carbon storage using remote sensing. Remote Sensing of Environment, 101(2), 277-282. https://doi.org/10.1016/j.rse.2005.12.001

Ozdogan, M. (2010). The spatial distribution of crop types from MODIS data: Temporal unmixing using Independent Component Analysis. Remote Sensing of Environment, 114(6), 1190-1204. https://doi.org/10.1016/j.rse.2010.01.006

Rees, W. G. (2013). Physical principles of remote sensing. Cambridge university press.

Roth, S. I., Leiterer, R., Volpi, M., Celio, E., Schaepman, M. E., & Joerg, P. C. (2019). Automated detection of individual clove trees for yield quantification in northeastern Madagascar based on multi-spectral satellite data. Remote Sensing of Environment, 221, 144-156. https://doi.org/10.1016/j.rse.2018.11.009

Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S. S., & Egorov, A. (2016). Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote sensing of Environment, 185, 57-70. https://doi.org/10.1016/j.rse.2015.12.024

Santillan, J. R., & Makinano-Santillan, M. (2018). Analysis Of In-Situ Spectral Reflectance Of Sago And Other Palms: Implications For Their Detection In Optical Satellite Images. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 4(3).

Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote sensing of environment, 81(2-3), 337-354. https://doi.org/10.1016/S0034-4257(02)00010-X

Sims, D. A., & Gamon, J. A. (2003). Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption features. Remote sensing of environment, 84(4), 526-537. https://doi.org/10.1016/S0034-4257(02)00151-7

Storey, J., Roy, D. P., Masek, J., Gascon, F., Dwyer, J., & Choate, M. (2016). A note on the temporary misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. Remote Sensing of Environment, 186, 121-122. https://doi.org/10.1016/j.rse.2016.08.025

Teixeira Pinto, C., Jing, X., & Leigh, L. (2020). Evaluation Analysis of Landsat Level-1 and Level-2 Data Products Using In Situ Measurements. Remote Sensing, 12(16), 2597.

Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment, 185, 46-56. https://doi.org/10.1016/j.rse.2016.04.008

Wang, T., Kou, X., Xiong, Y., Mou, P., Wu, J., & Ge, J. (2010). Temporal and spatial patterns of NDVI and their relationship to precipitation in the Loess Plateau of China. International Journal of Remote Sensing, 31(7), 1943-1958.

Weng, Q. (2011). Remote sensing of vegetation with landsat imagery. In Advances in Environmental Remote Sensing (pp. 3-30). CRC Press..

Xie, Y., Sha, Z., & Yu, M. (2008). Remote sensing imagery in vegetation mapping: a review. Journal of plant ecology, 1(1), 9-23.

Yuliara, I. M., MT, I., YULIARA, M., Kasmawan, I. G. A., & KASMAWAN, I. G. A. (2017). The Reflectance Spectral Characteristic of Cloves Vegetation Using Landsat 8 in Buleleng Bali. Journal of Food Security and Agriculture, 1(1).

Yuliara, I. M., Ratini, N. N., Windarjoto, W., & Suandayani, N. K. T. (2020). Spectral reflectance and principal component analysis on the distribution of clove vegetation using Landsat 8. International Journal of Physical Sciences and Engineering, 4(3), 27-37. https://doi.org/10.29332/ijpse.v4n3.611

Yuliara, I. M., Sutapa, G. N., & Kasmawan, G. A. (2018). Development and optimization of the ratio vegetation index on the visible and infrared spectrum. International Journal of Physical Sciences and Engineering, 2(2), 101-110. https://doi.org/10.29332/ijpse.v2n2.172

Published

2022-01-10

How to Cite

Yuliara, I. M., Ratini, N. N., & Kasmawan, I. G. A. (2022). Temporal analysis on spectral reflectance of clove vegetation based on landsat 8 imagery. International Journal of Physical Sciences and Engineering, 6(1), 1–8. https://doi.org/10.53730/ijpse.v6n1.2940

Issue

Section

Peer Review Articles

Most read articles by the same author(s)