The association of diabetes and obesity with severity of dengue fever
An immunopathology update
Keywords:
dengue virus, cytokines, obesity, diabetes immune systemAbstract
The arboviral infection dengue represents a global public health risk as the frequency of cases climbs across period and is anticipated to do so in the future. The fundamental mechanisms behind the concept between obesity and dengue, however, are rarely discussed. A number of variables, including the existence of cytokines that increase inflammatory response and deregulation of endothelium barrier protein production, contribute to plasma permeability, a defining feature of severe dengue. The key diabetes-related variables that impact endothelium functioning include th-1 skewed responses and the production of junctional-related proteins. Additionally, obesity affects lipid metabolism and the immune system, which increases viral multiplication and inflammatory processes. The common factor among individuals with diabetes and obesity is chronic inflammation, which results in endothelial dysfunction. Explored along with the disease's relationships with diabetes and obesity are the potential causes of comorbidities in severe dengue.
Downloads
References
Ab Fatah M. The use of carica papaya leaf juice as a supplement for dengue patients and its potential effect on immune modulation/Maisarah Binti Ab Fatah: University Of Malaya; 2014.
Afroze S, Shakur S, Wahab A, Shakur SJAJP. Clinical profile of dengue and predictors of its severity among children. 2019;5(4):219-23.
Ahmad R, Rasheed Z, Ahsan HJI, immunotoxicology. Biochemical and cellular toxicology of peroxynitrite: implications in cell death and autoimmune phenomenon. 2009;31(3):388-96.
Azar ST, Tamim H, Beyhum HN, Habbal MZ, Almawi WYJCDLI. Type I (insulin-dependent) diabetes is a Th1-and Th2-mediated autoimmune disease. 1999;6(3):306-10.
Benn CS, Netea MG, Selin LK, Aaby PJTii. A small jab–a big effect: nonspecific immunomodulation by vaccines. 2013;34(9):431-9.
Bhatt P, Sabeena SP, Varma M, Arunkumar GJCm. Current understanding of the pathogenesis of dengue virus infection. 2021;78(1):17-32.
Bhushan B, Sardana V, Maheshwari D, Ojha P, Mohan S, Moon P, et al. Immune-mediated neurological manifestations of dengue virus-a study of clinico-investigational variability, predictors of neuraxial involvement, and outcome with the role of immunomodulation. 2018;66(6):1634.
Boldescu V, Behnam MA, Vasilakis N, Klein CDJNRDD. Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. 2017;16(8):565-86.
Brake DK, Smith EOB, Mersmann H, Smith CW, Robker RLJAJoP-CP. ICAM-1 expression in adipose tissue: effects of diet-induced obesity in mice. 2006;291(6):C1232-C9.
Caër C, Rouault C, Le Roy T, Poitou C, Aron-Wisnewsky J, Torcivia A, et al. Immune cell-derived cytokines contribute to obesity-related inflammation, fibrogenesis and metabolic deregulation in human adipose tissue. 2017;7(1):1-11.
Calder PCJBeBA-M, Lipids CBo. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. 2015;1851(4):469-84.
Chen R-F, Liu J-W, Yeh W-T, Wang L, Chang J-C, Yu H-R, et al. Altered T helper 1 reaction but not increase of virus load in patients with dengue hemorrhagic fever. 2005;44(1):43-50.
Chiu Y-Y, Lin C-Y, Yu L-S, Wang W-H, Huang C-H, Chen Y-HJJoM, Immunology, et al. The association of obesity and dengue severity in hospitalized adult patients. 2022.
Coffey LL, Mertens E, Brehin A-C, Fernandez-Garcia MD, Amara A, Després P, et al. Human genetic determinants of dengue virus susceptibility. 2009;11(2):143-56.
Derouich M, Boutayeb A, Twizell EJBeo. A model of dengue fever. 2003;2(1):1-10.
Dickhout JG, Hossain GS, Pozza LM, Zhou J, Lhoták Sar, Austin RCJA, thrombosis,, et al. Peroxynitrite causes endoplasmic reticulum stress and apoptosis in human vascular endothelium: implications in atherogenesis. 2005;25(12):2623-9.
Dong T, Moran E, Vinh Chau N, Simmons C, Luhn K, Peng Y, et al. High pro-inflammatory cytokine secretion and loss of high avidity cross-reactive cytotoxic T-cells during the course of secondary dengue virus infection. 2007;2(12):e1192.
Finkelstein JL, Colt S, Layden AJ, Krisher JT, Stewart-Ibarra AM, Polhemus M, et al. Micronutrients, immunological parameters, and dengue virus infection in coastal Ecuador: a nested Case-Control study in an infectious disease surveillance program. 2020;221(1):91-101.
Fong CY, Hlaing CS, Tay CG, Kadir KAA, Goh KJ, Ong LCJejopn. Longitudinal extensive transverse myelitis with cervical epidural haematoma following dengue virus infection. 2016;20(3):449-53.
Gallagher P, Chan KR, Rivino L, Yacoub SJJoI. The association of obesity and severe dengue: possible pathophysiological mechanisms. 2020;81(1):10-6.
Gan VCJCTOiID. Dengue: moving from current standard of care to state-of-the-art treatment. 2014;6(3):208-26.
Gurugama P, Garg P, Perera J, Wijewickrama A, Seneviratne SLJIjod. Dengue viral infections. 2010;55(1):68.
Guy B, Nougarede N, Begue S, Sanchez V, Souag N, Carre M, et al. Cell-mediated immunity induced by chimeric tetravalent dengue vaccine in naive or flavivirus-primed subjects. 2008;26(45):5712-21.
Hales S, De Wet N, Maindonald J, Woodward AJTL. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. 2002;360(9336):830-4.
Hall A, Troupin A, Londono-Renteria B, Colpitts TMJV. Garlic organosulfur compounds reduce inflammation and oxidative stress during dengue virus infection. 2017;9(7):159.
Halstead SBJTl. Dengue. 2007;370(9599):1644-52.
Haltaufderhyde K, Srikiatkhachorn A, Green S, Macareo L, Park S, Kalayanarooj S, et al. Activation of peripheral T follicular helper cells during acute dengue virus infection. 2018;218(10):1675-85.
Heaton NS, Randall GJCh, microbe. Dengue virus-induced autophagy regulates lipid metabolism. 2010;8(5):422-32.
Hubbard AK, Rothlein RJFrb, medicine. Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. 2000;28(9):1379-86.
Jiang N, Li Y, Shu T, Wang JJFoM. Cytokines and inflammation in adipogenesis: an updated review. 2019;13(3):314-29.
Kalayanarooj S, Nimmannitya SJSAJTMPH. Is dengue severity related to nutritional status. 2005;36(2):378-84.
Kim S-H, Kim YN, Truong TT, Thuy NTT, Jang Y-SJB, Communications BR. Development of a monoclonal antibody specific to envelope domain III with broad-spectrum detection of all four dengue virus serotypes. 2016;473(4):894-8.
Lefrançais E, Mallavia B, Zhuo H, Calfee CS, Looney MRJJi. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. 2018;3(3).
Lei H-Y, Yeh T-M, Liu H-S, Lin Y-S, Chen S-H, Liu C-CJJobs. Immunopathogenesis of dengue virus infection. 2001;8(5):377-88.
Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, et al. A review on phospholipids and their main applications in drug delivery systems. 2015;10(2):81-98.
Li T, Zhang Z, Li X, Dong G, Zhang M, Xu Z, et al. Neutrophil extracellular traps: signaling properties and disease relevance. 2020;2020.
Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. 2020;10(1):1-11.
Lindenwald DL, Lepenies BJIjoms. C-Type lectins in veterinary species: recent advancements and applications. 2020;21(14):5122.
Ma Y, Yang X, Chatterjee V, Meegan JE, Beard Jr RS, Yuan SYJFii. Role of neutrophil extracellular traps and vesicles in regulating vascular endothelial permeability. 2019;10:1037.
Mahmood S, Hafeez S, Nabeel H, Zahra U, Nazeer HJISRN. Does comorbidity increase the risk of dengue hemorrhagic fever and dengue shock syndrome? 2013;2013.
Malavige GN, Ogg GSJJoCV. T cell responses in dengue viral infections. 2013;58(4):605-11.
Manda-Handzlik A, Bystrzycka W, Cieloch A, Glodkowska-Mrowka E, Jankowska-Steifer E, Heropolitanska-Pliszka E, et al. Nitric oxide and peroxynitrite trigger and enhance release of neutrophil extracellular traps. 2020;77(15):3059-75.
Marin-Palma D, Sirois CM, Urcuqui-Inchima S, Hernandez JCJPO. Inflammatory status and severity of disease in dengue patients are associated with lipoprotein alterations. 2019;14(3):e0214245.
Mathew A, Kurane I, Green S, Vaughn DW, Kalayanarooj S, Suntayakorn S, et al. Impaired T cell proliferation in acute dengue infection. 1999;162(9):5609-15.
Mathew A. Immunomodulatory Studies During Viral Infections: IISER-M; 2017.
Meegan JE, Yang X, Beard Jr RS, Jannaway M, Chatterjee V, Taylor-Clark TE, et al. Citrullinated histone 3 causes endothelial barrier dysfunction. 2018;503(3):1498-502.
Mulhem A, Moulla Y, Klöting N, Ebert T, Tönjes A, Fasshauer M, et al. Circulating cell adhesion molecules in metabolically healthy obesity. 2021;45(2):331-6.
Nguyen NM, Chanh HQ, Tam DTH, Vuong NL, Chau NTX, Chau NVV, et al. Metformin as adjunctive therapy for dengue in overweight and obese patients: a protocol for an open-label clinical trial (MeDO). 2020;5.
Ompico MGJPI. Methisoprinol for children with early phase dengue infection: a pilot study. 2013;53(6):320-7.
Organization WH. Global strategy for dengue prevention and control 2012-2020. 2012.
Ramirez JL, Dimopoulos GJD, Immunology C. The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes. 2010;34(6):625-9.
Rathore AP, Farouk FS, John ALSJCOiV. Risk factors and biomarkers of severe dengue. 2020;43:1-8.
Rehman WU, Shah Zeb SN, Meo SR, Naeem A, Ullah F, Ahmed SS, et al. Abnormalities in Serum Electrolytes in DF, DHF and DSS as Prognostic Indicators for Dengue Severity: A Comparative Model. 2022;16(10):386-.
Rodenhuis-Zybert IA, Wilschut J, Smit JMJC, sciences ml. Dengue virus life cycle: viral and host factors modulating infectivity. 2010;67(16):2773-86.
Sekaran S, Liew Z, Yam H, Raju CJD, Syndrome M. The association between diabetes and obesity with Dengue infections. 2022;14(1):1-12.
Singh A, Bisht P, Bhattacharya S, Guchhait PJFiC, Microbiology I. Role of platelet cytokines in dengue virus infection. 2020;10:561366.
Soe HJ, Manikam R, Raju CS, Khan MA, Sekaran SDJPo. Correlation of host inflammatory cytokines and immune-related metabolites, but not viral NS1 protein, with disease severity of dengue virus infection. 2020;15(8):e0237141.
Tian Y, Grifoni A, Sette A, Weiskopf DJFii. Human T cell response to dengue virus infection. 2019;10:2125.
Tsheten T, Clements AC, Gray DJ, Adhikary RK, Furuya-Kanamori L, Wangdi KJIdop. Clinical predictors of severe dengue: a systematic review and meta-analysis. 2021;10(1):1-10.
Vermes I, Beishuizen A, Hampsink RM, Haanen CJTJoCE, Metabolism. Dissociation of plasma adrenocorticotropin and cortisol levels in critically ill patients: possible role of endothelin and atrial natriuretic hormone. 1995;80(4):1238-42.
Villareal VA, Rodgers MA, Costello DA, Yang PLJAr. Targeting host lipid synthesis and metabolism to inhibit dengue and hepatitis C viruses. 2015;124:110-21.
Wahala WM, De Silva AMJV. The human antibody response to dengue virus infection. 2011;3(12):2374-95.
Werneck GL, Macias AE, Mascarenas C, Coudeville L, Morley D, Recamier V, et al. Comorbidities increase in-hospital mortality in dengue patients in Brazil. 2018;113.
Yang H, Macoris M, Galvani K, Andrighetti M, Wanderley DJE, Infection. Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. 2009;137(8):1188-202.
Zeb S, Bano S, Rafique I, Batool S, Rahman A, Jalal SJIJMR. Pharmaceutical features of herbal remedy Carica papaya in life threatening diseases and acceleration of thrombocytes count in dengue fever. 2020;7:19-25.
Zeb S, Hussain S, ul Ain N, Wajahat M, Ullah J, Naeem A, et al. Risk Factors, Screening and Seroprevalence of Dengue Virus Antigen (NS1) in Clinically Suspected Patients: A Community-Based Hospital Study. 2022.
Zeb SJOJTM. Manifestation Pattern of Malarial parasites among District Dir Lower inhabitants. 2020;4(1):028-33.
Zulkipli MS, Dahlui M, Jamil Na, Peramalah D, Wai HVC, Bulgiba A, et al. The association between obesity and dengue severity among pediatric patients: A systematic review and meta-analysis. 2018;12(2):e0006263.
Published
How to Cite
Issue
Section
Copyright (c) 2023 International journal of health sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.