Understanding tuberculosis: Examining its historical impact, modes of transmission, risk factors, and strategies for global prevention and effective treatment

https://doi.org/10.53730/ijhs.v3nS1.15301

Authors

  • Abdulrhman Awadh Alharbi KSA, National Guard Health Affairs
  • Ibrahim Muhammad Al-Arej KSA, National Guard Health Affairs
  • Abdullatif Suliman Alsayegh KSA, National Guard Health Affairs
  • Meshal Ibrahim Zaid Al Owias KSA, National Guard Health Affairs
  • Bader Sayah Alanezi KSA, National Guard Health Affairs

Keywords:

Tuberculosis, transmission, diagnosis, drug-resistant tuberculosis, global health, prevention, treatment, HIV

Abstract

Background: Tuberculosis (TB) is a highly infectious disease with a long history of impacting global health. Despite the availability of effective treatments, TB remains a significant cause of morbidity and mortality, particularly in low- and middle-income countries and among HIV-positive individuals. TB transmission occurs primarily through inhaling aerosolized droplets from an infected person, leading to potential disease progression. Risk factors for TB include close contact with infected individuals, residency in TB-endemic regions, and immunocompromising conditions like HIV and diabetes. Aim: This article aims to provide an overview of TB’s historical impact, modes of transmission, risk factors, diagnostic methods, and global strategies for prevention and treatment. Methods: The review synthesizes data from recent studies on TB transmission, clinical symptoms, imaging techniques, and diagnostic tests, including acid-fast bacilli (AFB) smear, nucleic acid amplification tests (NAATs), and immune-based tests. Various diagnostic and treatment protocols are discussed for both drug-susceptible and drug-resistant TB strains. Results: TB diagnosis relies on a combination of imaging, microbiologic testing, and immune-based tests. While AFB smears and NAATs remain primary diagnostic methods, novel imaging techniques like CT and PET scans are expanding diagnostic accuracy. 

Downloads

Download data is not yet available.

References

World Health Organization. (2017). Global tuberculosis report. Geneva, Switzerland: WHO.

Zink, A. R., Sola, C., Reischl, U., et al. (2003). Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. Journal of Clinical Microbiology, 41(1), 359–367. DOI: https://doi.org/10.1128/JCM.41.1.359-367.2003

Houben, R. M., & Dodd, P. J. (2016). The global burden of latent tuberculosis infection: A re-estimation using mathematical modelling. PLoS Medicine, 13(10), e1002152. DOI: https://doi.org/10.1371/journal.pmed.1002152

Stewart, R. J., Tsang, C. A., Pratt, R. H., et al. (2018). Tuberculosis—United States, 2017. MMWR Morbidity and Mortality Weekly Report, 67(10), 317–323. DOI: https://doi.org/10.15585/mmwr.mm6711a2

Tiemersma, E. W., van der Werf, M. J., Borgdorff, M. W., et al. (2011). Natural history of tuberculosis: Duration and fatality of untreated pulmonary tuberculosis in HIV-negative patients: A systematic review. PLoS One, 6(11), e17601. DOI: https://doi.org/10.1371/journal.pone.0017601

Ravimohan, S., Kornfeld, H., Weissman, D., et al. (2018). Tuberculosis and lung damage: From epidemiology to pathophysiology. European Respiratory Review, 27(170077). DOI: https://doi.org/10.1183/16000617.0077-2017

Harries, A. D., Satyanarayana, S., Kumar, A. M., et al. (2013). Epidemiology and interaction of diabetes mellitus and tuberculosis and challenges for care: A review. Public Health Action, 3(S3), S3–9. DOI: https://doi.org/10.5588/pha.13.0024

Daley, C., Gotway, M., & Jasmer, R. (2011). Radiographic manifestations of tuberculosis. Available at: http://www.currytbcenter.ucsf.edu/topics-interest/tbradiology. Accessed October 7, 2018.

Coleman, M. T., Chen, R. Y., Lee, M., et al. (2014). PET/CT imaging reveals a therapeutic response to oxazolidinones in macaques and humans with tuberculosis. Science Translational Medicine, 6(265ra167). DOI: https://doi.org/10.1126/scitranslmed.3009500

Lin, P. L., Maiello, P., Gideon, H. P., et al. (2016). PET CT identifies reactivation risk in cynomolgus macaques with latent M. tuberculosis. PLoS Pathogens, 12(e1005739). DOI: https://doi.org/10.1371/journal.ppat.1005739

Vorster, M., Sathekge, M. M., & Bomanji, J. (2014). Advances in imaging of tuberculosis: The role of (18)F-FDG PET and PET/CT. Current Opinion in Pulmonary Medicine, 20(3), 287–293. DOI: https://doi.org/10.1097/MCP.0000000000000043

Lewinsohn, D. M., Leonard, M. K., LoBue, P. A., et al. (2017). Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention clinical practice guidelines: Diagnosis of tuberculosis in adults and children. Clinical Infectious Diseases, 64(2), e1–e33. DOI: https://doi.org/10.1093/cid/ciw694

Mase, S. R., Ramsay, A., Ng, V., et al. (2007). Yield of serial sputum specimen examinations in the diagnosis of pulmonary tuberculosis: A systematic review. International Journal of Tuberculosis and Lung Disease, 11(5), 485–495.

Brown, M., Varia, H., Bassett, P., et al. (2007). Prospective study of sputum induction, gastric washing, and bronchoalveolar lavage for the diagnosis of pulmonary tuberculosis in patients who are unable to expectorate. Clinical Infectious Diseases, 44(11), 1415–1420. DOI: https://doi.org/10.1086/516782

Luetkemeyer, A. F., Firnhaber, C., Kendall, M. A., et al. (2016). Evaluation of Xpert MTB/RIF versus AFB smear and culture to identify pulmonary tuberculosis in patients with suspected tuberculosis from low and higher prevalence settings. Clinical Infectious Diseases, 62(9), 1081–1088. DOI: https://doi.org/10.1093/cid/ciw035

Gui, X., & Xiao, H. (2014). Diagnosis of tuberculosis pleurisy with adenosine deaminase (ADA): A systematic review and meta-analysis. International Journal of Clinical and Experimental Medicine, 7(10), 3126–3135.

Diel, R., Loddenkemper, R., & Nienhaus, A. (2010). Evidence-based comparison of commercial interferon gamma release assays for detecting active TB: A meta-analysis. Chest, 137(4), 952–968. DOI: https://doi.org/10.1378/chest.09-2350

Nahid, P., Dorman, S. E., Alipanah, N., et al. (2016). Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America clinical practice guidelines: Treatment of drug-susceptible tuberculosis. Clinical Infectious Diseases, 63(7), e147–e195. DOI: https://doi.org/10.1093/cid/ciw376

World Health Organization. (2017). Guidelines for treatment of drug-susceptible tuberculosis and patient care, 2017 update. Geneva, Switzerland: WHO.

Tuberculosis Trials Consortium. (2002). Once-weekly rifapentine and isoniazid versus twice-weekly rifampin and isoniazid in the continuation phase of therapy for drug-susceptible pulmonary tuberculosis: A prospective, randomized clinical trial among HIV-negative persons. The Lancet, 360(9344), 528–534. DOI: https://doi.org/10.1016/S0140-6736(02)09742-8

Khan, A., Sterling, T. R., Reves, R., et al. (2006). Lack of weight gain and relapse risk in a large tuberculosis treatment trial. American Journal of Respiratory and Critical Care Medicine, 174(3), 344–348. DOI: https://doi.org/10.1164/rccm.200511-1834OC

Gegia, M., Winters, N., Benedetti, A., et al. (2017). Treatment of isoniazid-resistant tuberculosis with first-line drugs: A systematic review and meta-analysis. The Lancet Infectious Diseases, 17(2), 223–234. DOI: https://doi.org/10.1016/S1473-3099(16)30407-8

Schechter, M. C., Bizune, D., Kagei, M., et al. (2017). Time to sputum culture conversion and treatment outcomes among patients with isoniazid-resistant tuberculosis in Atlanta, Georgia. Clinical Infectious Diseases, 65(11), 1862–1871. DOI: https://doi.org/10.1093/cid/cix686

Jindani, A., Harrison, T. S., Nunn, A. J., et al. (2014). High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. New England Journal of Medicine, 371(17), 1599–1608. DOI: https://doi.org/10.1056/NEJMoa1314210

World Health Organization. (2016). WHO treatment guidelines for drug-resistant tuberculosis. Geneva, Switzerland: WHO.

Curry International Tuberculosis Center. (2016). Drug-resistant tuberculosis: A survival guide for clinicians (3rd ed.). Retrieved from http://www.currytbcenter.ucsf.edu/products/view/drug-resistant-tuberculosis-survival-guide-clinicians-3rd-edition

Kang, Y. A., Shim, T. S., Koh, W. J., & et al. (2016). Choice between levofloxacin and moxifloxacin and multidrug-resistant tuberculosis treatment outcomes. Annals of the American Thoracic Society, 13(3), 364–370. https://doi.org/10.1513/AnnalsATS.201505-308OC DOI: https://doi.org/10.1513/AnnalsATS.201510-690BC

Dawson, R., Diacon, A. H., Everitt, D., & et al. (2015). Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: A phase 2b, open-label, partly randomized trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis. The Lancet, 385(9979), 1738–1747. https://doi.org/10.1016/S0140-6736(14)62113-1 DOI: https://doi.org/10.1016/S0140-6736(14)62002-X

Reuter, A., Tisile, P., von Delft, D., & et al. (2017). The devil we know: Is the use of injectable agents for the treatment of MDR-TB justified? International Journal of Tuberculosis and Lung Disease, 21(10), 1114–1126. https://doi.org/10.5588/ijtld.17.0338 DOI: https://doi.org/10.5588/ijtld.17.0468

Chang, K. C., Nuermberger, E., Sotgiu, G., & et al. (2018). New drugs and regimens for tuberculosis. Respirology. https://doi.org/10.1111/resp.13345 DOI: https://doi.org/10.1111/resp.13345

Van Deun, A., Maug, A. K., Salim, M. A., & et al. (2010). Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. American Journal of Respiratory and Critical Care Medicine, 182(5), 684–692. https://doi.org/10.1164/rccm.201001-0025OC DOI: https://doi.org/10.1164/rccm.201001-0077OC

Aung, K. J., Van Deun, A., Declercq, E., & et al. (2014). Successful 9-month Bangladesh regimen for multidrug-resistant tuberculosis among over 500 consecutive patients. International Journal of Tuberculosis and Lung Disease, 18(9), 1180–1187. https://doi.org/10.5588/ijtld.14.0168 DOI: https://doi.org/10.5588/ijtld.14.0100

Sotgiu, G., Tiberi, S., Centis, R., & et al. (2017). Applicability of the shorter Bangladesh regimen in high multidrug-resistant tuberculosis settings. International Journal of Infectious Diseases, 56, 190–193. https://doi.org/10.1016/j.ijid.2016.10.007 DOI: https://doi.org/10.1016/j.ijid.2016.10.021

Berry, C., Yates, T. A., Seddon, J. A., & et al. (2016). Efficacy, safety, and tolerability of linezolid for the treatment of XDR-TB: A study in China. European Respiratory Journal, 47(6), 1591–1592. https://doi.org/10.1183/13993003.01290-2015 DOI: https://doi.org/10.1183/13993003.01646-2015

Agyeman, A. A., & Ofori-Asenso, R. (2016). Efficacy and safety profile of linezolid in the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis: A systematic review and meta-analysis. Annals of Clinical Microbiology and Antimicrobials, 15, 41. https://doi.org/10.1186/s12941-016-0173-6 DOI: https://doi.org/10.1186/s12941-016-0156-y

Borisov, S. E., Dheda, K., Enwerem, M., & et al. (2017). Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: A multicentre study. European Respiratory Journal, 49, Article 1700387. https://doi.org/10.1183/13993003.00387-2017 DOI: https://doi.org/10.1183/13993003.00387-2017

Burman, W., Benator, D., Vernon, A., & et al. (2006). Acquired rifamycin resistance with twice-weekly treatment of HIV-related tuberculosis. American Journal of Respiratory and Critical Care Medicine, 173(4), 350–356. https://doi.org/10.1164/rccm.200505-715OC DOI: https://doi.org/10.1164/rccm.200503-417OC

Johnston, J. C., Campbell, J. R., & Menzies, D. (2017). Effect of intermittency on treatment outcomes in pulmonary tuberculosis: An updated systematic review and meta-analysis. Clinical Infectious Diseases, 64(9), 1211–1220. https://doi.org/10.1093/cid/cix012 DOI: https://doi.org/10.1093/cid/cix121

Gopalan, N., Santhanakrishnan, R. K., Palaniappan, A. N., & et al. (2018). Daily vs intermittent antituberculosis therapy for pulmonary tuberculosis in patients with HIV: A randomized clinical trial. JAMA Internal Medicine, 178(4), 485–493. https://doi.org/10.1001/jamainternmed.2017.8280 DOI: https://doi.org/10.1001/jamainternmed.2018.0141

DeMaio, J., Schwartz, L., Cooley, P., & et al. (2001). The application of telemedicine technology to a directly observed therapy program for tuberculosis: A pilot project. Clinical Infectious Diseases, 33(12), 2082–2084. https://doi.org/10.1086/324722 DOI: https://doi.org/10.1086/324506

Krueger, K., Ruby, D., Cooley, P., & et al. (2010). Videophone utilization as an alternative to directly observed therapy for tuberculosis. International Journal of Tuberculosis and Lung Disease, 14(6), 779–781.

Garfein, R. S., Collins, K., Munoz, F., & et al. (2015). Feasibility of tuberculosis treatment monitoring by video directly observed therapy: A binational pilot study. International Journal of Tuberculosis and Lung Disease, 199), 1057–1064. https://doi.org/10.5588/ijtld.15.0142 DOI: https://doi.org/10.5588/ijtld.14.0923

Theron, G., Venter, R., Smith, L., & et al. (2018). False-positive Xpert MTB/RIF results in retested patients with previous tuberculosis: Frequency, profile, and prospective clinical outcomes. Journal of Clinical Microbiology, 56(3). Article e01696-17. https://doi.org/10.1128/JCM.01696-17 DOI: https://doi.org/10.1128/JCM.01696-17

Haas, M. K., & Daley, C. L. (2016). Mycobacterial lung disease complicating HIV infection. Seminars in Respiratory and Critical Care Medicine, 37(2), 230–242. https://doi.org/10.1055/s-0036-1586352 DOI: https://doi.org/10.1055/s-0036-1572559

Mfinanga, S. G., Kirenga, B. J., Chanda, D. M., & et al. (2014). Early versus delayed initiation of highly active antiretroviral therapy for HIV-positive adults with newly diagnosed pulmonary tuberculosis (TB-HAART): A prospective, international, randomized, placebo-controlled trial. The Lancet Infectious Diseases, 14(6), 563–571. https://doi.org/10.1016/S1473-3099(14)70003-0 DOI: https://doi.org/10.1016/S1473-3099(14)70733-9

Nahid, P., Gonzalez, L. C., Rudoy, I., & et al. (2007). Treatment outcomes of patients with HIV and tuberculosis. American Journal of Respiratory and Critical Care Medicine, 175(11), 1199–1206. https://doi.org/10.1164/rccm.200604-523OC DOI: https://doi.org/10.1164/rccm.200509-1529OC

Torok, M. E., Yen, N. T., Chau, T. T., & et al. (2011). Timing of initiation of antiretroviral therapy in human immunodeficiency virus (HIV)–associated tuberculous meningitis. Clinical Infectious Diseases, 52(11), 1374–1383. https://doi.org/10.1093/cid/cir221 DOI: https://doi.org/10.1093/cid/cir230

Naidoo, K., Yende-Zuma, N., Padayatchi, N., & et al. (2012). The immune reconstitution inflammatory syndrome after antiretroviral therapy initiation in patients with tuberculosis: Findings from the SAPiT trial. Annals of Internal Medicine, 157(5), 313–324. https://doi.org/10.7326/0003-4819-157-5-201209040-00006 DOI: https://doi.org/10.7326/0003-4819-157-5-201209040-00004

Lawn, S. D., Myer, L., Bekker, L. G., & et al. (2007). Tuberculosis-associated immune reconstitution disease: Incidence, risk factors and impact in an antiretroviral treatment service in South Africa. AIDS, 21(3), 335–341. https://doi.org/10.1097/QAD.0b013e328013218f DOI: https://doi.org/10.1097/QAD.0b013e328011efac

Marais, B. J., & Seddon, J. A. (2018). The global burden of drug-resistant tuberculosis. The Lancet Infectious Diseases, 18(11), 1263–1264. https://doi.org/10.1016/S1473-3099(18)30340-1

Published

15-01-2019

How to Cite

Alharbi, A. A., Al-Arej, I. M., Alsayegh, A. S., Al Owias, M. I. Z., & Alanezi, B. S. (2019). Understanding tuberculosis: Examining its historical impact, modes of transmission, risk factors, and strategies for global prevention and effective treatment. International Journal of Health Sciences, 3(S1), 423–435. https://doi.org/10.53730/ijhs.v3nS1.15301

Issue

Section

Peer Review Articles

Most read articles by the same author(s)