Understanding tuberculosis: Examining its historical impact, modes of transmission, risk factors, and strategies for global prevention and effective treatment
Keywords:
Tuberculosis, transmission, diagnosis, drug-resistant tuberculosis, global health, prevention, treatment, HIVAbstract
Background: Tuberculosis (TB) is a highly infectious disease with a long history of impacting global health. Despite the availability of effective treatments, TB remains a significant cause of morbidity and mortality, particularly in low- and middle-income countries and among HIV-positive individuals. TB transmission occurs primarily through inhaling aerosolized droplets from an infected person, leading to potential disease progression. Risk factors for TB include close contact with infected individuals, residency in TB-endemic regions, and immunocompromising conditions like HIV and diabetes. Aim: This article aims to provide an overview of TB’s historical impact, modes of transmission, risk factors, diagnostic methods, and global strategies for prevention and treatment. Methods: The review synthesizes data from recent studies on TB transmission, clinical symptoms, imaging techniques, and diagnostic tests, including acid-fast bacilli (AFB) smear, nucleic acid amplification tests (NAATs), and immune-based tests. Various diagnostic and treatment protocols are discussed for both drug-susceptible and drug-resistant TB strains. Results: TB diagnosis relies on a combination of imaging, microbiologic testing, and immune-based tests. While AFB smears and NAATs remain primary diagnostic methods, novel imaging techniques like CT and PET scans are expanding diagnostic accuracy.
Downloads
References
World Health Organization. (2017). Global tuberculosis report. Geneva, Switzerland: WHO.
Zink, A. R., Sola, C., Reischl, U., et al. (2003). Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. Journal of Clinical Microbiology, 41(1), 359–367. DOI: https://doi.org/10.1128/JCM.41.1.359-367.2003
Houben, R. M., & Dodd, P. J. (2016). The global burden of latent tuberculosis infection: A re-estimation using mathematical modelling. PLoS Medicine, 13(10), e1002152. DOI: https://doi.org/10.1371/journal.pmed.1002152
Stewart, R. J., Tsang, C. A., Pratt, R. H., et al. (2018). Tuberculosis—United States, 2017. MMWR Morbidity and Mortality Weekly Report, 67(10), 317–323. DOI: https://doi.org/10.15585/mmwr.mm6711a2
Tiemersma, E. W., van der Werf, M. J., Borgdorff, M. W., et al. (2011). Natural history of tuberculosis: Duration and fatality of untreated pulmonary tuberculosis in HIV-negative patients: A systematic review. PLoS One, 6(11), e17601. DOI: https://doi.org/10.1371/journal.pone.0017601
Ravimohan, S., Kornfeld, H., Weissman, D., et al. (2018). Tuberculosis and lung damage: From epidemiology to pathophysiology. European Respiratory Review, 27(170077). DOI: https://doi.org/10.1183/16000617.0077-2017
Harries, A. D., Satyanarayana, S., Kumar, A. M., et al. (2013). Epidemiology and interaction of diabetes mellitus and tuberculosis and challenges for care: A review. Public Health Action, 3(S3), S3–9. DOI: https://doi.org/10.5588/pha.13.0024
Daley, C., Gotway, M., & Jasmer, R. (2011). Radiographic manifestations of tuberculosis. Available at: http://www.currytbcenter.ucsf.edu/topics-interest/tbradiology. Accessed October 7, 2018.
Coleman, M. T., Chen, R. Y., Lee, M., et al. (2014). PET/CT imaging reveals a therapeutic response to oxazolidinones in macaques and humans with tuberculosis. Science Translational Medicine, 6(265ra167). DOI: https://doi.org/10.1126/scitranslmed.3009500
Lin, P. L., Maiello, P., Gideon, H. P., et al. (2016). PET CT identifies reactivation risk in cynomolgus macaques with latent M. tuberculosis. PLoS Pathogens, 12(e1005739). DOI: https://doi.org/10.1371/journal.ppat.1005739
Vorster, M., Sathekge, M. M., & Bomanji, J. (2014). Advances in imaging of tuberculosis: The role of (18)F-FDG PET and PET/CT. Current Opinion in Pulmonary Medicine, 20(3), 287–293. DOI: https://doi.org/10.1097/MCP.0000000000000043
Lewinsohn, D. M., Leonard, M. K., LoBue, P. A., et al. (2017). Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention clinical practice guidelines: Diagnosis of tuberculosis in adults and children. Clinical Infectious Diseases, 64(2), e1–e33. DOI: https://doi.org/10.1093/cid/ciw694
Mase, S. R., Ramsay, A., Ng, V., et al. (2007). Yield of serial sputum specimen examinations in the diagnosis of pulmonary tuberculosis: A systematic review. International Journal of Tuberculosis and Lung Disease, 11(5), 485–495.
Brown, M., Varia, H., Bassett, P., et al. (2007). Prospective study of sputum induction, gastric washing, and bronchoalveolar lavage for the diagnosis of pulmonary tuberculosis in patients who are unable to expectorate. Clinical Infectious Diseases, 44(11), 1415–1420. DOI: https://doi.org/10.1086/516782
Luetkemeyer, A. F., Firnhaber, C., Kendall, M. A., et al. (2016). Evaluation of Xpert MTB/RIF versus AFB smear and culture to identify pulmonary tuberculosis in patients with suspected tuberculosis from low and higher prevalence settings. Clinical Infectious Diseases, 62(9), 1081–1088. DOI: https://doi.org/10.1093/cid/ciw035
Gui, X., & Xiao, H. (2014). Diagnosis of tuberculosis pleurisy with adenosine deaminase (ADA): A systematic review and meta-analysis. International Journal of Clinical and Experimental Medicine, 7(10), 3126–3135.
Diel, R., Loddenkemper, R., & Nienhaus, A. (2010). Evidence-based comparison of commercial interferon gamma release assays for detecting active TB: A meta-analysis. Chest, 137(4), 952–968. DOI: https://doi.org/10.1378/chest.09-2350
Nahid, P., Dorman, S. E., Alipanah, N., et al. (2016). Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America clinical practice guidelines: Treatment of drug-susceptible tuberculosis. Clinical Infectious Diseases, 63(7), e147–e195. DOI: https://doi.org/10.1093/cid/ciw376
World Health Organization. (2017). Guidelines for treatment of drug-susceptible tuberculosis and patient care, 2017 update. Geneva, Switzerland: WHO.
Tuberculosis Trials Consortium. (2002). Once-weekly rifapentine and isoniazid versus twice-weekly rifampin and isoniazid in the continuation phase of therapy for drug-susceptible pulmonary tuberculosis: A prospective, randomized clinical trial among HIV-negative persons. The Lancet, 360(9344), 528–534. DOI: https://doi.org/10.1016/S0140-6736(02)09742-8
Khan, A., Sterling, T. R., Reves, R., et al. (2006). Lack of weight gain and relapse risk in a large tuberculosis treatment trial. American Journal of Respiratory and Critical Care Medicine, 174(3), 344–348. DOI: https://doi.org/10.1164/rccm.200511-1834OC
Gegia, M., Winters, N., Benedetti, A., et al. (2017). Treatment of isoniazid-resistant tuberculosis with first-line drugs: A systematic review and meta-analysis. The Lancet Infectious Diseases, 17(2), 223–234. DOI: https://doi.org/10.1016/S1473-3099(16)30407-8
Schechter, M. C., Bizune, D., Kagei, M., et al. (2017). Time to sputum culture conversion and treatment outcomes among patients with isoniazid-resistant tuberculosis in Atlanta, Georgia. Clinical Infectious Diseases, 65(11), 1862–1871. DOI: https://doi.org/10.1093/cid/cix686
Jindani, A., Harrison, T. S., Nunn, A. J., et al. (2014). High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. New England Journal of Medicine, 371(17), 1599–1608. DOI: https://doi.org/10.1056/NEJMoa1314210
World Health Organization. (2016). WHO treatment guidelines for drug-resistant tuberculosis. Geneva, Switzerland: WHO.
Curry International Tuberculosis Center. (2016). Drug-resistant tuberculosis: A survival guide for clinicians (3rd ed.). Retrieved from http://www.currytbcenter.ucsf.edu/products/view/drug-resistant-tuberculosis-survival-guide-clinicians-3rd-edition
Kang, Y. A., Shim, T. S., Koh, W. J., & et al. (2016). Choice between levofloxacin and moxifloxacin and multidrug-resistant tuberculosis treatment outcomes. Annals of the American Thoracic Society, 13(3), 364–370. https://doi.org/10.1513/AnnalsATS.201505-308OC DOI: https://doi.org/10.1513/AnnalsATS.201510-690BC
Dawson, R., Diacon, A. H., Everitt, D., & et al. (2015). Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: A phase 2b, open-label, partly randomized trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis. The Lancet, 385(9979), 1738–1747. https://doi.org/10.1016/S0140-6736(14)62113-1 DOI: https://doi.org/10.1016/S0140-6736(14)62002-X
Reuter, A., Tisile, P., von Delft, D., & et al. (2017). The devil we know: Is the use of injectable agents for the treatment of MDR-TB justified? International Journal of Tuberculosis and Lung Disease, 21(10), 1114–1126. https://doi.org/10.5588/ijtld.17.0338 DOI: https://doi.org/10.5588/ijtld.17.0468
Chang, K. C., Nuermberger, E., Sotgiu, G., & et al. (2018). New drugs and regimens for tuberculosis. Respirology. https://doi.org/10.1111/resp.13345 DOI: https://doi.org/10.1111/resp.13345
Van Deun, A., Maug, A. K., Salim, M. A., & et al. (2010). Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. American Journal of Respiratory and Critical Care Medicine, 182(5), 684–692. https://doi.org/10.1164/rccm.201001-0025OC DOI: https://doi.org/10.1164/rccm.201001-0077OC
Aung, K. J., Van Deun, A., Declercq, E., & et al. (2014). Successful 9-month Bangladesh regimen for multidrug-resistant tuberculosis among over 500 consecutive patients. International Journal of Tuberculosis and Lung Disease, 18(9), 1180–1187. https://doi.org/10.5588/ijtld.14.0168 DOI: https://doi.org/10.5588/ijtld.14.0100
Sotgiu, G., Tiberi, S., Centis, R., & et al. (2017). Applicability of the shorter Bangladesh regimen in high multidrug-resistant tuberculosis settings. International Journal of Infectious Diseases, 56, 190–193. https://doi.org/10.1016/j.ijid.2016.10.007 DOI: https://doi.org/10.1016/j.ijid.2016.10.021
Berry, C., Yates, T. A., Seddon, J. A., & et al. (2016). Efficacy, safety, and tolerability of linezolid for the treatment of XDR-TB: A study in China. European Respiratory Journal, 47(6), 1591–1592. https://doi.org/10.1183/13993003.01290-2015 DOI: https://doi.org/10.1183/13993003.01646-2015
Agyeman, A. A., & Ofori-Asenso, R. (2016). Efficacy and safety profile of linezolid in the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis: A systematic review and meta-analysis. Annals of Clinical Microbiology and Antimicrobials, 15, 41. https://doi.org/10.1186/s12941-016-0173-6 DOI: https://doi.org/10.1186/s12941-016-0156-y
Borisov, S. E., Dheda, K., Enwerem, M., & et al. (2017). Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: A multicentre study. European Respiratory Journal, 49, Article 1700387. https://doi.org/10.1183/13993003.00387-2017 DOI: https://doi.org/10.1183/13993003.00387-2017
Burman, W., Benator, D., Vernon, A., & et al. (2006). Acquired rifamycin resistance with twice-weekly treatment of HIV-related tuberculosis. American Journal of Respiratory and Critical Care Medicine, 173(4), 350–356. https://doi.org/10.1164/rccm.200505-715OC DOI: https://doi.org/10.1164/rccm.200503-417OC
Johnston, J. C., Campbell, J. R., & Menzies, D. (2017). Effect of intermittency on treatment outcomes in pulmonary tuberculosis: An updated systematic review and meta-analysis. Clinical Infectious Diseases, 64(9), 1211–1220. https://doi.org/10.1093/cid/cix012 DOI: https://doi.org/10.1093/cid/cix121
Gopalan, N., Santhanakrishnan, R. K., Palaniappan, A. N., & et al. (2018). Daily vs intermittent antituberculosis therapy for pulmonary tuberculosis in patients with HIV: A randomized clinical trial. JAMA Internal Medicine, 178(4), 485–493. https://doi.org/10.1001/jamainternmed.2017.8280 DOI: https://doi.org/10.1001/jamainternmed.2018.0141
DeMaio, J., Schwartz, L., Cooley, P., & et al. (2001). The application of telemedicine technology to a directly observed therapy program for tuberculosis: A pilot project. Clinical Infectious Diseases, 33(12), 2082–2084. https://doi.org/10.1086/324722 DOI: https://doi.org/10.1086/324506
Krueger, K., Ruby, D., Cooley, P., & et al. (2010). Videophone utilization as an alternative to directly observed therapy for tuberculosis. International Journal of Tuberculosis and Lung Disease, 14(6), 779–781.
Garfein, R. S., Collins, K., Munoz, F., & et al. (2015). Feasibility of tuberculosis treatment monitoring by video directly observed therapy: A binational pilot study. International Journal of Tuberculosis and Lung Disease, 199), 1057–1064. https://doi.org/10.5588/ijtld.15.0142 DOI: https://doi.org/10.5588/ijtld.14.0923
Theron, G., Venter, R., Smith, L., & et al. (2018). False-positive Xpert MTB/RIF results in retested patients with previous tuberculosis: Frequency, profile, and prospective clinical outcomes. Journal of Clinical Microbiology, 56(3). Article e01696-17. https://doi.org/10.1128/JCM.01696-17 DOI: https://doi.org/10.1128/JCM.01696-17
Haas, M. K., & Daley, C. L. (2016). Mycobacterial lung disease complicating HIV infection. Seminars in Respiratory and Critical Care Medicine, 37(2), 230–242. https://doi.org/10.1055/s-0036-1586352 DOI: https://doi.org/10.1055/s-0036-1572559
Mfinanga, S. G., Kirenga, B. J., Chanda, D. M., & et al. (2014). Early versus delayed initiation of highly active antiretroviral therapy for HIV-positive adults with newly diagnosed pulmonary tuberculosis (TB-HAART): A prospective, international, randomized, placebo-controlled trial. The Lancet Infectious Diseases, 14(6), 563–571. https://doi.org/10.1016/S1473-3099(14)70003-0 DOI: https://doi.org/10.1016/S1473-3099(14)70733-9
Nahid, P., Gonzalez, L. C., Rudoy, I., & et al. (2007). Treatment outcomes of patients with HIV and tuberculosis. American Journal of Respiratory and Critical Care Medicine, 175(11), 1199–1206. https://doi.org/10.1164/rccm.200604-523OC DOI: https://doi.org/10.1164/rccm.200509-1529OC
Torok, M. E., Yen, N. T., Chau, T. T., & et al. (2011). Timing of initiation of antiretroviral therapy in human immunodeficiency virus (HIV)–associated tuberculous meningitis. Clinical Infectious Diseases, 52(11), 1374–1383. https://doi.org/10.1093/cid/cir221 DOI: https://doi.org/10.1093/cid/cir230
Naidoo, K., Yende-Zuma, N., Padayatchi, N., & et al. (2012). The immune reconstitution inflammatory syndrome after antiretroviral therapy initiation in patients with tuberculosis: Findings from the SAPiT trial. Annals of Internal Medicine, 157(5), 313–324. https://doi.org/10.7326/0003-4819-157-5-201209040-00006 DOI: https://doi.org/10.7326/0003-4819-157-5-201209040-00004
Lawn, S. D., Myer, L., Bekker, L. G., & et al. (2007). Tuberculosis-associated immune reconstitution disease: Incidence, risk factors and impact in an antiretroviral treatment service in South Africa. AIDS, 21(3), 335–341. https://doi.org/10.1097/QAD.0b013e328013218f DOI: https://doi.org/10.1097/QAD.0b013e328011efac
Marais, B. J., & Seddon, J. A. (2018). The global burden of drug-resistant tuberculosis. The Lancet Infectious Diseases, 18(11), 1263–1264. https://doi.org/10.1016/S1473-3099(18)30340-1
Published
How to Cite
Issue
Section
Copyright (c) 2019 International journal of health sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.