Allergies: Un updated review article of food allergy

https://doi.org/10.53730/ijhs.v7nS1.15305

Authors

  • Bodour Nasser Alsahli KSA, National Guard Health Affairs
  • Ahmad Alhelo Alanazi KSA, National Guard Health Affairs
  • Albandary Saad Alseaib KSA, National Guard Health Affairs
  • Norah Mubarak Alomayrah KSA, National Guard Health Affairs
  • Norah Faraj M Alqanoor KSA, National Guard Health Affairs
  • Saud Dakhel Alanazi KSA, National Guard Health Affairs
  • Ibrahim Muhammad Al-Arej KSA, National Guard Health Affairs
  • Maryam Khudhayr Alrasheedi KSA, National Guard Health Affairs

Keywords:

Food allergy, epithelial barrier, immune response, desensitization, tolerance, biomarkers

Abstract

Background: Food allergy (FA) is increasingly recognized as a significant global health issue, with ongoing research shedding light on its mechanisms and progression. This updated review emphasizes recent findings, particularly concerning biomarkers related to desensitization and tolerance development. Aim: The primary objective of this article is to synthesize current advancements in the understanding of FA, focusing on the role of epithelial barrier function, immune response mechanisms, and potential therapeutic strategies. Methods: This review synthesizes findings from recent studies concerning food allergy pathophysiology, specifically examining the interplay between the epithelial barrier, immune responses, and potential interventions, including emollient therapy and immunotherapy. Results: The integrity of the epithelial barrier is crucial for immune tolerance to allergens. Disruptions due to genetic mutations or environmental factors lead to increased susceptibility to FA. Current interventions, including the use of emollients and dietary modifications, have shown mixed results in preventing allergic manifestations. Additionally, new insights into immunological responses, particularly involving IgE glycosylation and T follicular helper cell dynamics, contribute to our understanding of allergy mechanisms. Conclusion: Maintaining a healthy epithelial barrier and understanding the immune system's complex interactions are vital for developing effective prevention and treatment strategies for food allergies. 

Downloads

Download data is not yet available.

References

Eiwegger T, Hung L, San Diego KE, O'Mahony L, Upton J. Recent developments and highlights in food allergy. Allergy. 2019; 74(12): 2355-2367. doi:10.1111/ALL.14082 DOI: https://doi.org/10.1111/all.14082

Moran TP. The external exposome and food allergy. Curr Allergy Asthma Rep. 2020; 20(8): 1-9. doi:10.1007/s11882-020-00936-2 DOI: https://doi.org/10.1007/s11882-020-00936-2

Ashley SE, Tan HTT, Vuillermin P, et al. The skin barrier function gene SPINK5 is associated with challenge-proven IgE-mediated food allergy in infants. Allergy. 2017; 72(9): 1356-1364. doi:10.1111/all.13143 DOI: https://doi.org/10.1111/all.13143

Tham EH, Leung DYM. Mechanisms by which atopic dermatitis predisposes to food allergy and the atopic march. Allergy Asthma Immunol Res. 2019; 11(1): 4-15. doi:10.4168/aair.2019.11.1.4 DOI: https://doi.org/10.4168/aair.2019.11.1.4

Bergmann S, von Buenau B, Vidal-y-Sy S, et al. Claudin-1 decrease impacts epidermal barrier function in atopic dermatitis lesions dose-dependently. Sci Rep. 2020; 10(1): 1-12. doi:10.1038/s41598-020-58718-9 DOI: https://doi.org/10.1038/s41598-020-58718-9

Tan HTT, Hagner S, Ruchti F, et al. Tight junction, mucin, and inflammasome-related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice. Allergy. 2019; 74(2): 294-307. doi:10.1111/all.13619 DOI: https://doi.org/10.1111/all.13619

Leung DYM, Calatroni A, Zaramela LS, et al. The nonlesional skin surface distinguishes atopic dermatitis with food allergy as a unique endotype. Sci Transl Med. 2019; 11(480): 2685. doi:10.1126/scitranslmed.aav2685 DOI: https://doi.org/10.1126/scitranslmed.aav2685

Goleva E, Berdyshev E, Leung DYM. Epithelial barrier repair and prevention of allergy. J Clin Invest. 2019; 129(4): 1463-1474. doi:10.1172/JCI124608 DOI: https://doi.org/10.1172/JCI124608

Hoyer A, Rehbinder EM, Färdig M, et al. Filaggrin mutations in relation to skin barrier and atopic dermatitis in early infancy. Br J Dermatol. 2022; 186(3): 544-552. doi:10.1111/bjd.20831 DOI: https://doi.org/10.1111/bjd.20831

Suaini NHA, Wang Y, Soriano VX, et al. Genetic determinants of paediatric food allergy: a systematic review. Allergy. 2019; 74(9): 1631-1648. doi:10.1111/all.13767 DOI: https://doi.org/10.1111/all.13767

Sicherer SH, Wood RA, Vickery BP, et al. The natural history of egg allergy in an observational cohort. J Allergy Clin Immunol. 2014; 133(2): 492-499.e8. doi:10.1016/j.jaci.2013.12.1041 DOI: https://doi.org/10.1016/j.jaci.2013.12.1041

Yang G, Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. Skin barrier abnormalities and immune dysfunction in atopic dermatitis. Int J Mol Sci. 2020; 21(8): 2867. doi:10.3390/ijms21082867 DOI: https://doi.org/10.3390/ijms21082867

Celebi Sozener Z, Ozdel Ozturk B, Cerci P, et al. Epithelial barrier hypothesis: effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy. 2022; 77(5): 1418-1449. doi:10.1111/all.15240 DOI: https://doi.org/10.1111/all.15240

Kanchan, K., Grinek, S., Bahnson, H. T., Ruczinski, I., Shankar, G., Larson, D., ... & Mathias, R. A. (2022). HLA alleles and sustained peanut consumption promote IgG4 responses in subjects protected from peanut allergy. The Journal of Clinical Investigation, 132(1). DOI: https://doi.org/10.1172/JCI152070

in the development of food allergy: what is the evidence and how can this be prevented? Allergy. 2020; 75(9): 2185-2205. doi:10.1111/all.14304 DOI: https://doi.org/10.1111/all.14304

Tran MM, Lefebvre DL, Dharma C, et al. Predicting the atopic march: results from the Canadian healthy infant longitudinal development study. J Allergy Clin Immunol. 2018; 141(2): 601-607.e8. doi:10.1016/j.jaci.2017.08.024 DOI: https://doi.org/10.1016/j.jaci.2017.08.024

Alexander H, Paller AS, Traidl-Hoffmann C, et al. The role of bacterial skin infections in atopic dermatitis: expert statement and review from the international eczema council skin infection group. Br J Dermatol. 2020; 182(6): 1331-1342. doi:10.1111/bjd.18643 DOI: https://doi.org/10.1111/bjd.18643

Reiger M, Schwierzeck V, Traidl-Hoffmann C. Atopic eczema and microbiome. Hautarzt. 2019; 70(6): 407-415. doi:10.1007/s00105-019-4424-6 DOI: https://doi.org/10.1007/s00105-019-4424-6

Neumann A, Reiger M, Bhattacharyya M, Rao N, Denis L, Zammit D. Microbiome correlates of success of treatment of atopic dermatitis with the JAK/SYK inhibitor ASN002. Allergy. 2019; 74(106): 12.

Sindher S, Alkotob SS, Shojinaga MN, et al. Increases in plasma IgG4/IgE with trilipid vs paraffin/petrolatum-based emollients for dry skin/eczema. Ebisawa M, ed. Pediatr Allergy Immunol. 2020; 31(6): 699-703. doi:10.1111/pai.13253 DOI: https://doi.org/10.1111/pai.13253

Sindher S, Alkotob SS, Shojinaga MN, et al. Pilot study measuring transepidermal water loss (TEWL) in children suggests trilipid cream is more effective than a paraffin-based emollient. Allergy. 2020; 75: 2662-2664. doi:10.1111/all.14275 DOI: https://doi.org/10.1111/all.14275

Imran S, Neeland MR, Shepherd R, et al. A potential role for epigenetically mediated trained immunity in food allergy. iScience. 2020; 23(6):101171. doi:10.1016/j.isci.2020.101171 DOI: https://doi.org/10.1016/j.isci.2020.101171

Kelleher MM, Tran L, Boyle RJ. Prevention of food allergy – skin barrier interventions. Allergol Int. 2020; 69(1): 3-10. doi:10.1016/j.alit.2019.10.005 DOI: https://doi.org/10.1016/j.alit.2019.10.005

Elias PM, Wakefield JS, Man MQ. Moisturizers versus current and next-generation barrier repair therapy for the management of atopic dermatitis. Skin Pharmacol Physiol. 2018; 32(1): 1-7. doi:10.1159/000493641 DOI: https://doi.org/10.1159/000493641

Lowe A, Su J, Tang M, et al. PEBBLES study protocol: a randomised controlled trial to prevent atopic dermatitis, food allergy and sensitisation in infants with a family history of allergic disease using a skin barrier improvement strategy. BMJ Open. 2019; 9(3): 1-9. doi:10.1136/bmjopen-2018-024594 DOI: https://doi.org/10.1136/bmjopen-2018-024594

Chalmers JR, Haines RH, Bradshaw LE, et al. Daily emollient during infancy for prevention of eczema: the BEEP randomised controlled trial. Lancet. 2020; 395(10228): 962-972. doi:10.1016/S0140-6736(19)32984-8 DOI: https://doi.org/10.1016/S0140-6736(19)32984-8

Skjerven HO, Rehbinder EM, Vettukattil R, et al. Skin emollient and early complementary feeding to prevent infant atopic dermatitis (PreventADALL): a factorial, multicentre, cluster-randomised trial. Lancet. 2020; 395(10228): 951-961. doi:10.1016/S0140-6736(19)32983-6 DOI: https://doi.org/10.1016/S0140-6736(19)32983-6

Wärnberg Gerdin S, Lie A, Asarnoj A, et al. Impaired skin barrier and allergic sensitization in early infancy. Allergy. 2022; 77(5): 1464-1476. doi:10.1111/all.15170 DOI: https://doi.org/10.1111/all.15170

Eichner B, Michaels LAC, Branca K, et al. A community-based assessment of skin care, allergies, and eczema (CASCADE): an atopic dermatitis primary prevention study using emollients – protocol for a randomized controlled trial. Trials. 2020; 21(1): 243. doi:10.1186/s13063-020-4150-5 DOI: https://doi.org/10.1186/s13063-020-4150-5

Kelleher MM, Cro S, Cornelius V, et al. Skincare interventions in infants for preventing eczema and food allergy. Cochrane Database Syst Rev. 2020; 2020(2):CD013534. doi:10.1002/14651858.CD013534 DOI: https://doi.org/10.1002/14651858.CD013534

Chaoimh CN, Lad D, Nico C, et al. Early initiation of short-term emollient use for the prevention of atopic dermatitis in high-risk infants—the STOP-AD randomised controlled trial. Allergy. 2022; 78: 984-994. doi:10.1111/all.15491 DOI: https://doi.org/10.1111/all.15491

Shade KTC, Platzer B, Washburn N, et al. A single glycan on IgE is indispensable for initiation of anaphylaxis. J Exp Med. 2015; 212(4): 457-467. doi:10.1084/jem.20142182 DOI: https://doi.org/10.1084/jem.20142182

Shade KTC, Conroy ME, Washburn N, et al. Sialylation of immunoglobulin E is a determinant of allergic pathogenicity. Nature. 2020; 582(7811): 265-270. doi:10.1038/s41586-020-2311-z DOI: https://doi.org/10.1038/s41586-020-2311-z

Xie MM, Bertozzi CR, Wang TT. Immunoglobulin E sialylation regulates allergic responses. Immunol Cell Biol. 2020; 98(8): 617-619. doi:10.1111/imcb.12368 DOI: https://doi.org/10.1111/imcb.12368

Jennewein MF, Goldfarb I, Dolatshahi S, et al. Fc glycan-mediated regulation of placental antibody transfer. Cell. 2019; 178(1): 202-215.e14. doi:10.1016/j.cell.2019.05.044 DOI: https://doi.org/10.1016/j.cell.2019.05.044

Sodemann EB, Dähling S, Klopfleisch R, et al. Maternal asthma is associated with persistent changes in allergic offspring antibody glycosylation. Clin Exp Allergy. 2020; 50(4): 520-531. doi:10.1111/cea.13559 DOI: https://doi.org/10.1111/cea.13559

Cheng HD, Tirosh I, de Haan N, et al. IgG fc glycosylation as an axis of humoral immunity in childhood. J Allergy Clin Immunol. 2020; 145(2): 710-713.e9. doi:10.1016/j.jaci.2019.10.012 DOI: https://doi.org/10.1016/j.jaci.2019.10.012

Satitsuksanoa P, Daanje M, Akdis M, Boyd SD, van de Veen W. Biology and dynamics of B cells in the context of IgE-mediated food allergy. Allergy Eur J Allergy Clin Immunol. 2021; 76(6): 1707-1717. doi:10.1111/all.14684 DOI: https://doi.org/10.1111/all.14684

Gowthaman U, Chen JS, Zhang B, et al. Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science. 2019; 365(6456):eaaw6433. doi:10.1126/science.aaw6433 DOI: https://doi.org/10.1126/science.aaw6433

Dang TD, Peters RL, Koplin JJ, et al. Egg allergen specific IgE diversity predicts resolution of egg allergy in the population cohort HealthNuts. Allergy. 2019; 74(2): 318-326. doi:10.1111/all.13572 DOI: https://doi.org/10.1111/all.13572

Breiteneder H. Mapping of conformational IgE epitopes of food allergens. Allergy. 2018; 73(11): 2107-2109. doi:10.1111/all.13592 DOI: https://doi.org/10.1111/all.13592

Hofer G, Wieser S, Bogdos MK, et al. Three-dimensional structure of the wheat β-amylase tri a 17, a clinically relevant food allergen. Allergy. 2019; 74(5): 1009-1013. doi:10.1111/all.13696 DOI: https://doi.org/10.1111/all.13696

Santos AF, Barbosa-Morais NL, Hurlburt BK, et al. IgE to epitopes of Ara h 2 enhance the diagnostic accuracy of Ara h 2-specific IgE. Allergy. 2020; 75(9): 2309-2318. doi:10.1111/all.14301 DOI: https://doi.org/10.1111/all.14301

Duan L, Celik A, Hoang JA, et al. Basophil activation test shows high accuracy in the diagnosis of peanut and tree nut allergy: the markers of nut allergy study. Allergy. 2021; 76(6): 1800-1812. doi:10.1111/all.14695 DOI: https://doi.org/10.1111/all.14695

Keet C, Plesa M, Szelag D, et al. Ara h 2–specific IgE is superior to whole peanut extract–based serology or skin prick test for diagnosis of peanut allergy in infancy. J Allergy Clin Immunol. 2021; 147: 977-983.e2. doi:10.1016/j.jaci.2020.11.034 DOI: https://doi.org/10.1016/j.jaci.2020.11.034

Hemmings O, Du Toit G, Radulovic S, Lack G, Santos AF. Ara h 2 is the dominant peanut allergen despite similarities with Ara h 6. J Allergy Clin Immunol. 2020; 146: 621-630.e5. doi:10.1016/j.jaci.2020.03.026 DOI: https://doi.org/10.1016/j.jaci.2020.03.026

Suárez-Fariñas M, Suprun M, Kearney P, et al. Accurate and reproducible diagnosis of peanut allergy using epitope mapping. Allergy. 2021; 76(12): 3789-3797. doi:10.1111/all.14905 DOI: https://doi.org/10.1111/all.14905

Suprun M, Sicherer SH, Wood RA, et al. Early epitope-specific IgE antibodies are predictive of childhood peanut allergy. J Allergy Clin Immunol. 2020; 146(5): 1080-1088. doi:10.1016/j.jaci.2020.08.005 DOI: https://doi.org/10.1016/j.jaci.2020.08.005

Suprun M, Getts R, Grishina G, Tsuang A, Suárez-Fariñas M, Sampson HA. Ovomucoid epitope-specific repertoire of IgE, IgG4, IgG1, IgA1, and IgD antibodies in egg-allergic children. Allergy Eur J Allergy Clin Immunol. 2020; 75(10): 2633-2643. doi:10.1111/all.14357 DOI: https://doi.org/10.1111/all.14357

Suprun M, Getts R, Raghunathan R, et al. Novel bead-based epitope assay is a sensitive and reliable tool for profiling epitope-specific antibody repertoire in food allergy. Sci Rep. 2019; 9(1): 1-14. doi:10.1038/s41598-019-54868-7 DOI: https://doi.org/10.1038/s41598-019-54868-7

Hoh RA, Joshi SA, Lee JY, et al. Origins and clonal convergence of gastrointestinal IgE+ B cells in human peanut allergy. Sci Immunol. 2020; 5(45):eaay4209. doi:10.1126/sciimmunol.aay4209 DOI: https://doi.org/10.1126/sciimmunol.aay4209

Miyake K, Shibata S, Yoshikawa S, Karasuyama H. Basophils and their effector molecules in allergic disorders. Allergy. 2020; 76(6): 1693-1706. doi:10.1111/all.14662 DOI: https://doi.org/10.1111/all.14662

Kashiwakura J-I, Ando T, Karasuyama H, et al. The basophil-IL-4-mast cell axis is required for food allergy. Allergy. 2019; 74(10): 1992-1996. doi:10.1111/all.13834 DOI: https://doi.org/10.1111/all.13834

Iype J, Odermatt A, Bachmann S, Coeudevez M, Fux M. IL-1β promotes immunoregulatory responses in human blood basophils. Allergy. 2021; 76(7): 2017-2029. doi:10.1111/all.14760 DOI: https://doi.org/10.1111/all.14760

Marwaha AK, Laxer R, Liang M, et al. A chromosomal duplication encompassing interleukin-33 causes a novel hyper IgE phenotype characterized by eosinophilic esophagitis and generalized autoimmunity. Gastroenterology. 2022; 163(2): 510-513. doi:10.1053/j.gastro.2022.04.026 DOI: https://doi.org/10.1053/j.gastro.2022.04.026

Benede S, Tordesillas L, Berin C. Demonstration of distinct pathways of mast cell-dependent inhibition of Treg generation using murine bone marrow-derived mast cells. Allergy. 2020; 75(8): 2088-2091. doi:10.1111/all.14267 DOI: https://doi.org/10.1111/all.14267

Uchida S, Izawa K, Ando T, et al. CD300f is a potential therapeutic target for the treatment of food allergy. Allergy. 2020; 75(2): 471-474. doi:10.1111/all.14034 DOI: https://doi.org/10.1111/all.14034

Chinthrajah S, Cao S, Liu C, et al. Phase 2a randomized, placebo-controlled study of anti–IL-33 in peanut allergy. JCI Insight. 2019; 4(22): e131347. doi:10.1172/jci.insight.131347 DOI: https://doi.org/10.1172/jci.insight.131347

Msallam R, Balla J, Rathore APS, et al. Fetal mast cells mediate postnatal allergic responses dependent on maternal IgE. Science. 2020; 370(6519): 941-950. doi:10.1126/science.aba0864 DOI: https://doi.org/10.1126/science.aba0864

Kothari A, Hirschmugl B, Lee J-S, et al. The impact of maternal-fetal omalizumab transfer on peanut-specific responses in an ex vivo placental perfusion model. Allergy. 2022; 77(12): 3684-3686. doi:10.1111/all.15468 DOI: https://doi.org/10.1111/all.15468

Krempski JW, Kobayashi T, Iijima K, McKenzie AN, Kita H. Group 2 innate lymphoid cells promote development of T follicular helper cells and initiate allergic sensitization to peanuts. J Immunol. 2020; 204(12): 3086-3096. doi:10.4049/jimmunol.2000029 DOI: https://doi.org/10.4049/jimmunol.2000029

Leyva-Castillo JM, Galand C, Kam C, et al. Mechanical skin injury promotes food anaphylaxis by driving intestinal mast cell expansion. Immunity. 2019; 50(5): 1262-1275.e4. doi:10.1016/j.immuni.2019.03.023 DOI: https://doi.org/10.1016/j.immuni.2019.03.023

Liu X, Song W, Wong BY, et al. A comparison framework and guideline of clustering methods for mass cytometry data. Genome Biol. 2019; 20(1): 297. doi:10.1186/s13059-019-1917-7 DOI: https://doi.org/10.1186/s13059-019-1917-7

Morita H, Kubo T, Rückert B, et al. Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. J Allergy Clin Immunol. 2019; 143(6): 2190-2201.e9. doi:10.1016/j.jaci.2018.12.1018 DOI: https://doi.org/10.1016/j.jaci.2018.12.1018

Palomares F, Gómez F, Bogas G, et al. Innate lymphoid cells type 2 in LTP-allergic patients and their modulation during sublingual immunotherapy. Allergy. 2021; 76(7): 2253-2256. doi:10.1111/all.14745 DOI: https://doi.org/10.1111/all.14745

Looman KIM, van Meel ER, Grosserichter-Wagener C, et al. Associations of Th2, Th17, Treg cells, and IgA+ memory B cells with atopic disease in children: the generation R study. Allergy. 2020; 75(1): 178-187. doi:10.1111/all.14010 DOI: https://doi.org/10.1111/all.14010

Ruiter B, Smith NP, Monian B, et al. Expansion of the CD4+ effector T-cell repertoire characterizes peanut-allergic patients with heightened clinical sensitivity. J Allergy Clin Immunol. 2020; 145(1): 270-282. doi:10.1016/j.jaci.2019.09.033 DOI: https://doi.org/10.1016/j.jaci.2019.09.033

Wambre E, Bajzik V, DeLong JH, et al. A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders. Sci Transl Med. 2017; 9(401):eaam9171. doi:10.1126/scitranslmed.aam9171 DOI: https://doi.org/10.1126/scitranslmed.aam9171

Monian B, Tu AA, Ruiter B, et al. Peanut oral immunotherapy differentially suppresses clonally distinct subsets of T helper cells. J Clin Invest. 2022; 132(2):e150634. doi:10.1172/JCI150634 DOI: https://doi.org/10.1172/JCI150634

Luce S, Chinthrajah S, Lyu SC, Nadeau KC, Mascarell L. Th2A and Th17 cell frequencies and regulatory markers as follow-up biomarker candidates for successful multifood oral immunotherapy. Allergy. 2020; 75(6): 1513-1516. doi:10.1111/all.14180 DOI: https://doi.org/10.1111/all.14180

Yao Y, Chen C-L, Yu D, Liu Z. Roles of follicular helper and regulatory T cells in allergic diseases and allergen immunotherapy. Allergy. 2021; 76(2): 456-470. doi:10.1111/all.14639 DOI: https://doi.org/10.1111/all.14639

Bertolini TB, Biswas M, Terhorst C, Daniell H, Herzog RW, Piñeros AR. Role of orally induced regulatory T cells in immunotherapy and tolerance. Cell Immunol. 2021; 359:104251. doi:10.1016/j.cellimm.2020.104251 DOI: https://doi.org/10.1016/j.cellimm.2020.104251

Collier F, Ponsonby A, O'Hely M, et al. Naïve regulatory T cells in infancy: associations with perinatal factors and development of food allergy. Allergy. 2019; 74(9): 1760-1768. doi:10.1111/all.13822 DOI: https://doi.org/10.1111/all.13822

Černý V, Petrásková P, Novotná O, et al. Value of cord blood Treg population properties and function-associated characteristics for predicting allergy development in childhood. Cent J Immunol. 2020; 45(4): 393-402. doi:10.5114/ceji.2020.103413 DOI: https://doi.org/10.5114/ceji.2020.103413

Bergerson JR, Erickson K, Singh AM. Tr1 cell identification and phenotype in children with and without food allergy. J Allergy Clin Immunol. 2017; 139(2): AB70. doi:10.1016/j.jaci.2016.12.276 DOI: https://doi.org/10.1016/j.jaci.2016.12.276

Feehley T, Plunkett CH, Bao R, et al. Healthy infants harbor intestinal bacteria that protect against food allergy. Nat Med. 2019; 25(3): 448-453. doi:10.1038/s41591-018-0324-z DOI: https://doi.org/10.1038/s41591-018-0324-z

Mauras A, Wopereis H, Yeop I, et al. Gut microbiota from infant with cow's milk allergy promotes clinical and immune features of atopy in a murine model. Allergy. 2019; 74(9): 1790-1793. doi:10.1111/all.13787 DOI: https://doi.org/10.1111/all.13787

Roduit C, Frei R, Ferstl R, et al. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy. 2019; 74(4): 799-809. doi:10.1111/all.13660 DOI: https://doi.org/10.1111/all.13660

Sepahi A, Liu Q, Friesen L, Kim CH. Dietary fiber metabolites regulate innate lymphoid cell responses. Mucosal Immunol. 2021; 14(2): 317-330. doi:10.1038/s41385-020-0312-8 DOI: https://doi.org/10.1038/s41385-020-0312-8

Folkerts J, Redegeld F, Folkerts G, et al. Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRI-mediated signaling. Allergy. 2020; 75(8): 1966-1978. doi:10.1111/all.14254 DOI: https://doi.org/10.1111/all.14254

O'Mahony L. Short-chain fatty acids modulate mast cell activation. Allergy. 2020; 75(8): 1848-1849. doi:10.1111/all.14313 DOI: https://doi.org/10.1111/all.14313

Paparo L, Nocerino R, Ciaglia E, et al. Butyrate as a bioactive human milk protective component against food allergy. Allergy. 2021; 76(5): 1398-1415. doi:10.1111/all.14625 DOI: https://doi.org/10.1111/all.14625

Pan L-L, Ren Z, Tu X, et al. GPR109A deficiency promotes IL-33 overproduction and type 2 immune response in food allergy in mice. Allergy. 2021; 76(8): 2613-2616. doi:10.1111/all.14849 DOI: https://doi.org/10.1111/all.14849

Forde B, Yao L, Shaha R, Murphy S, Lunjani N, O'Mahony L. Immunomodulation by foods and microbes: unravelling the molecular tango. Allergy. 2022; 77(12): 3513-3526. doi:10.1111/ALL.15455 DOI: https://doi.org/10.1111/all.15455

Zhou L, Chu C, Teng F, et al. Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature. 2019; 568(7752): 405-409. doi:10.1038/s41586-019-1082-x DOI: https://doi.org/10.1038/s41586-019-1082-x

Zhang B, Liu E, Gertie JA, et al. Divergent T follicular helper cell requirement for IgA and IgE production to peanut during allergic sensitization. Sci Immunol. 2020; 5(47):eaay2754. doi:10.1126/sciimmunol.aay2754 DOI: https://doi.org/10.1126/sciimmunol.aay2754

Published

15-01-2023

How to Cite

Alsahli, B. N., Alanazi, A. A., Alseaib, A. S., Alomayrah, N. M., Alqanoor, N. F. M., Alanazi, S. D., Al-Arej, I. M., & Alrasheedi, M. K. (2023). Allergies: Un updated review article of food allergy. International Journal of Health Sciences, 7(S1), 3683–3697. https://doi.org/10.53730/ijhs.v7nS1.15305

Issue

Section

Peer Review Articles

Most read articles by the same author(s)