Load analysis to solve the daytime demand in a house that is located in "la armenia urbanization" with a sizing of photovoltaic cells connected to the grid

https://doi.org/10.29332/ijpse.v4n3.562

Authors

  • Juan Xavier Guerrero García Universidad Técnica de Manabí, Portoviejo, Ecuador
  • Andrea Katiushka Loor Calderón Universidad Técnica de Manabí, Portoviejo, Ecuador
  • Guillermo Antonio Loor Castillo Universidad Técnica de Manabí, Portoviejo, Ecuador
  • Wilber Manuel Saltos Arauz Universidad Técnica de Manabí, Portoviejo, Ecuador
  • Lenin Agustín Cuenca Alava Universidad Técnica de Manabí, Portoviejo, Ecuador

Keywords:

dimensioning, micro grid, photovoltaic system, renewable energy, solar energy

Abstract

In this article a load analysis is carried out that is capable of solving the daytime demand for a home in the La Armenia urbanization of the Conooto parish belonging to the Quito canton, with the sizing of photovoltaic cells connected to the grid, seeking to reduce the environmental impact and the cost in terms of electricity generation. The sun is considered as the main resource that contributes to the generation of electricity, since the sun spills enough energy on the planet, if it is used efficiently, we could produce 400 times more than what is currently generated. The sector in which the study is carried out generates 4.16 kWh of solar energy on a daily average, with the use of this energy we could satisfy the daytime consumption of the house; A design of a grid connection photovoltaic generation system will be carried out in the form of distributed generation to satisfy the demand of the house during daytime hours.

Downloads

Download data is not yet available.

References

Abella, M. A. (2005). Sistemas fotovoltaicos. SAPT Publicaciones Técnicas, SL.

Arauz, W. M. S., Gámez, M. R., Pérez, A. V., & Fernández, M. C. (2016). Microgrids views from a geographic information system. International research journal of engineering, IT & scientific research, 2(11), 57-65.

Arencibia, G. (2016). La importancia del uso de paneles solares en la generación de energía eléctrica. REDVET. Revista Electrónica de Veterinaria 17(9),1-4.

Cattaneo, B. (2018). Photovoltaic Geographical Information System (PVGIS). EU Science Hub - European Commission.

Chávez, M. A. (2013). Proyecto de Factibilidad para uso de Paneles Solares en Generación Fotovoltaica de Electricidad en el Complejo Habitacional “San Antonio” de Riobamba.

Dincer, I. (2000). Renewable energy and sustainable development: a crucial review. Renewable and sustainable energy reviews, 4(2), 157-175. https://doi.org/10.1016/S1364-0321(99)00011-8

Green, T. C., & Prodanovi?, M. (2007). Control of inverter-based micro-grids. Electric power systems research, 77(9), 1204-1213. https://doi.org/10.1016/j.epsr.2006.08.017

Hernández, L. 2006. El problema energético en el desarrollo global y la energía fotovoltaica. Revista Iberoamericana de Física 2(1),2-6.

Horikoshi, I. (2009). Análisis de las componentes armónicas de los inversores fotovoltaicos de conexión a red.

Insa, J. (2015). Como afecta la temperatura a una placa solar. Monsolar.

Jiayi, H., Chuanwen, J., & Rong, X. (2008). A review on distributed energy resources and MicroGrid. Renewable and Sustainable Energy Reviews, 12(9), 2472-2483. https://doi.org/10.1016/j.rser.2007.06.004

Jiménez, O., Franklin, O., & Wilmer A.S. (2017). Diseño y simulación de la operación y control de los convertidores estáticos de energía en una micro-red eléctrica inteligente (Micro-Smart Grid) aplicado un sistema de alumbrado público a partir de fuentes de energía renovables (fotovoltaica y eólica).

Kobayashi, K., Takano, I., & Sawada, Y. (2006). A study of a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions. Solar energy materials and solar cells, 90(18-19), 2975-2988. https://doi.org/10.1016/j.solmat.2006.06.050

Lalouni, S., Rekioua, D., Rekioua, T., & Matagne, E. (2009). Fuzzy logic control of stand-alone photovoltaic system with battery storage. Journal of power Sources, 193(2), 899-907. https://doi.org/10.1016/j.jpowsour.2009.04.016

Murcia, H.R. (2008). Desarrollo de la energía solar en Colombia y sus perspectivas. Revista de ingeniería (28), 83-89.

Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and sustainable energy reviews, 15(3), 1513-1524. https://doi.org/10.1016/j.rser.2010.11.037

Peralta, J., Ángeles L., Alfredo B., Ian S., & Emérita D. (2013). Análisis estadístico de la información meteorológica para la explotación de energías renovables en el Ecuador. Pp. 9-9.

PVSYST. (2014). Home. PVSyst. Recuperado 7 de mayo de 2020.

Rodriguez, M., & Vázquez, A. (2018). La energía fotovoltaica en la provincia de Manabí.

Santamarta, J. (2004). Las energías renovables son el futuro». World Watch 22(3440.16).

Sidrach-de-Cardona, M., & Lopez, L. M. (1999). Performance analysis of a grid-connected photovoltaic system. Energy, 24(2), 93-102. https://doi.org/10.1016/S0360-5442(98)00084-X

Telecomunicación, Colegio Oficial de Ingenieros. (2002). Energía solar fotovoltaica. Madrid: Ibergraphi.

Published

2020-12-31

How to Cite

García, J. X. G., Calderón, A. K. L., Castillo, G. A. L., Arauz, W. M. S., & Alava, L. A. C. (2020). Load analysis to solve the daytime demand in a house that is located in "la armenia urbanization" with a sizing of photovoltaic cells connected to the grid. International Journal of Physical Sciences and Engineering, 4(3), 16–26. https://doi.org/10.29332/ijpse.v4n3.562

Issue

Section

Peer Review Articles

Most read articles by the same author(s)