Pacemakers, and heart failure monitoring devices-controlling medications and updating readings-role of pharmacists

https://doi.org/10.53730/ijhs.v2nS1.15257

Authors

  • Aishah Ebrahim Alhazami KSA, National Guard Health Affairs
  • Fahad Alabeidi KSA, National Guard Health Affairs
  • Faisal Mohammed Alosaimi KSA, National Guard Health Affairs
  • Ibrahim Furih Alshammari KSA, National Guard Health Affairs
  • Abdulelah Mohammed Mubashir Alamri KSA, National Guard Health Affairs
  • Sarah Abdullah Alsaeed KSA, National Guard Health Affairs
  • Azzam Abdullah Rashed Al Nemer KSA, National Guard Health Affairs
  • Mohammed Tarish Sulbi Alshammari KSA, National Guard Health Affairs
  • Mohammed Ibrahim Suliman Albabtain KSA, National Guard Health Affairs

Keywords:

Pacemakers, Heart Failure, Pharmacists, Medication Management, Cardiac Conduction Disorders, Patient Care

Abstract

Background: Pacemakers and heart failure monitoring devices are critical in managing bradycardia and other cardiac conduction disorders. While conventional electronic pacemakers are effective, they present several challenges, including lead malfunction and infection risks. Aim: This review aims to evaluate the evolving role of pharmacists in managing patients with implanted pacemakers and heart failure monitoring devices, focusing on medication management and monitoring. Methods: The article reviews current literature on the functionality and advancements in pacemaker technology, the pathophysiology of conduction disorders, and the implications for pharmacological interventions. Results: Pharmacists play a crucial role in ensuring optimal medication therapy management, especially regarding anticoagulants, antiarrhythmics, and heart failure medications. They monitor drug interactions, manage side effects, and assess adherence to treatment regimens. The integration of novel pharmacological agents, such as ivabradine, offers additional strategies for heart rate control, enhancing patient outcomes. Conclusion: The role of pharmacists is evolving in the context of pacemaker management, emphasizing the importance of comprehensive medication reviews, patient education, and interdisciplinary collaboration to improve health outcomes for patients with heart devices.

Downloads

Download data is not yet available.

References

Miranda, J. O., Ramalho, C., Henriques-Coelho, T. & Areias, J. C. Fetal programming as a predictor of adult health or disease: the need to reevaluate fetal heart function. Heart Fail. Rev. 22, 861–877 (2017). DOI: https://doi.org/10.1007/s10741-017-9638-z

Friedman, D., Duncanson, L., Glickstein, J. & Buyon, J. A review of congenital heart block. Images Paediatr. Cardiol. 5, 36–48 (2003).

Marban, E. Cardiac channelopathies. Nature 415, 213–218 (2002). DOI: https://doi.org/10.1038/415213a

Bers, D. M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002). DOI: https://doi.org/10.1038/415198a

Crick, S. J. et al. Innervation of the human cardiac conduction system. A quantitative immunohistochemical and histochemical study. Circulation 89, 1697–1708 (1994). DOI: https://doi.org/10.1161/01.CIR.89.4.1697

Anderson, R. H., Yanni, J., Boyett, M. R., Chandler, N. J. & Dobrzynski, H. The anatomy of the cardiac conduction system. Clin. Anat. 22, 99–113 (2009). DOI: https://doi.org/10.1002/ca.20700

Anderson, R. H. & Ho, S. Y. The architecture of the sinus node, the atrioventricular conduction axis, and the internodal atrial myocardium. J. Cardiovasc. Electrophysiol. 9, 1233–1248 (1998). DOI: https://doi.org/10.1111/j.1540-8167.1998.tb00097.x

Epstein, J. A. Franklin, H. Epstein Lecture. Cardiac development and implications for heart disease. N. Engl. J. Med. 363, 1638–1647 (2010). DOI: https://doi.org/10.1056/NEJMra1003941

van Weerd, J. H. & Christoffels, V. M. The formation and function of the cardiac conduction system. Development 143, 197–210 (2016). DOI: https://doi.org/10.1242/dev.124883

Ionta, V. et al. SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability. Stem Cell Rep. 4, 129–142 (2015). DOI: https://doi.org/10.1016/j.stemcr.2014.11.004

Kapoor, N., Liang, W., Marban, E. & Cho, H. C. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat. Biotechnol. 31, 54–62 (2013). DOI: https://doi.org/10.1038/nbt.2465

Liang, W., Cho, H. C. & Marban, E. Wnt signalling suppresses voltage-dependent Na+ channel expression in postnatal rat cardiomyocytes. J. Physiol. 593, 1147–1157 (2015). DOI: https://doi.org/10.1113/jphysiol.2014.285551

Christoffels, V. M. & Moorman, A. F. Development of the cardiac conduction system: why are some regions of the heart more arrhythmogenic than others? Circul. Arrhythmia Electrophysiol. 2, 195–207 (2009). DOI: https://doi.org/10.1161/CIRCEP.108.829341

Eisner, D. A. & Cerbai, E. Beating to time: calcium clocks, voltage clocks, and cardiac pacemaker activity. Am. J. Physiol. Heart Circ. Physiol. 296, H561–H562 (2009). DOI: https://doi.org/10.1152/ajpheart.00056.2009

DiFrancesco, D. Characterization of single pacemaker channels in cardiac sino-atrial node cells. Nature 324, 470–473 (1986). DOI: https://doi.org/10.1038/324470a0

Mangoni, M. E. et al. Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc. Natl Acad. Sci. USA 100, 5543–5548 (2003). DOI: https://doi.org/10.1073/pnas.0935295100

Huser, J. et al. Functional coupling between glycolysis and excitation-contraction coupling underlies alternans in cat heart cells. J. Physiol. 524, 795–806 (2000). DOI: https://doi.org/10.1111/j.1469-7793.2000.00795.x

Bogdanov, K. Y., Vinogradova, T. M. & Lakatta, E. G. Sinoatrial nodal cell ryanodine receptor and Na+-Ca2+ exchanger: molecular partners in pacemaker regulation. Circul. Res. 88, 1254–1258 (2001). DOI: https://doi.org/10.1161/hh1201.092095

Groenke, S. et al. Complete atrial-specific knockout of sodium-calcium exchange eliminates sinoatrial node pacemaker activity. PloS ONE 8, e81633 (2013). DOI: https://doi.org/10.1371/journal.pone.0081633

Torrente, A. G. et al. Burst pacemaker activity of the sinoatrial node in sodium-calcium exchanger knockout mice. Proc. Natl Acad. Sci. USA 112, 9769–9774 (2015). DOI: https://doi.org/10.1073/pnas.1505670112

DiFrancesco, D. & Borer, J. S. The funny current: cellular basis for the control of heart rate. Drugs 67 (Suppl. 2), 15–24 (2007). DOI: https://doi.org/10.2165/00003495-200767002-00003

Walsh, K. B. & Kass, R. S. Regulation of a heart potassium channel by protein kinase A and C. Science 242, 67–69 (1988). DOI: https://doi.org/10.1126/science.2845575

Monfredi, O., Maltsev, V. A. & Lakatta, E. G. Modern concepts concerning the origin of the heartbeat. Physiology 28, 74–92 (2013). DOI: https://doi.org/10.1152/physiol.00054.2012

Vinogradova, T. M. et al. High basal protein kinase A-dependent phosphorylation drives rhythmic internal Ca2+ store oscillations and spontaneous beating of cardiac pacemaker cells. Circul. Res. 98, 505–514 (2006). DOI: https://doi.org/10.1161/01.RES.0000204575.94040.d1

Bleiziffer, S. et al. Predictors for new-onset complete heart block after transcatheter aortic valve implantation. JACC Cardiovasc. Interv. 3, 524–530 (2010). DOI: https://doi.org/10.1016/j.jcin.2010.01.017

Izmirly, P. M. et al. Clinical and pathologic implications of extending the spectrum of maternal autoantibodies reactive with ribonucleoproteins associated with cutaneous and now cardiac neonatal lupus from SSA/Ro and SSB/La to U1RNP. Autoimmun. Rev. 16, 980–983 (2017). DOI: https://doi.org/10.1016/j.autrev.2017.07.013

Ramos, S., Matturri, L., Rossi, L. & Rossi, M. Scleroatrophy of the atrioventricular junctional specialized tissue (Lenegre-Lev Disease) in chronic chagas' heart disease. Acta Cardiol. 50, 483–487 (1995).

Epstein, A. E. et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 61, e6–e75 (2013). DOI: https://doi.org/10.1016/j.jacc.2012.11.007

Greenspon, A. J. et al. Trends in permanent pacemaker implantation in the United States from 1993 to 2009: increasing complexity of patients and procedures. J. Am. Coll. Cardiol. 60, 1540–1545 (2012). DOI: https://doi.org/10.1016/S0735-1097(12)60704-9

Aquilina, O. A brief history of cardiac pacing. Images Paediatr. Cardiol. 8, 17–81 (2006).

van Hemel, N. M. & van der Wall, E. E. 8 October 1958, D Day for the implantable pacemaker. Neth. Heart J. 16 (Suppl. 1), S3–S4 (2008). DOI: https://doi.org/10.1007/BF03086195

Larsson, B., Elmqvist, H., Rydén, L. & Schüller, H. Lessons from the first patient with an implanted pacemaker: 1958–2001. Pacing Clin. Electrophysiol. 26, 114–124 (2003). DOI: https://doi.org/10.1046/j.1460-9592.2003.00162.x

Chardack, W. M., Gage, A. A. & Greatbatch, W. A transistorized, self-contained, implantable pacemaker for the long-term correction of complete heart block. Surgery 48, 643–654 (1960).

Parsonnet, V., Driller, J., Cook, D. & Rizvi, S. A. Thirty-one years of clinical experience with “nuclear-powered” pacemakers. Pacing Clin. Electrophysiol. 29, 195–200 (2006). DOI: https://doi.org/10.1111/j.1540-8159.2006.00317.x

Smyth, N. P., Keshishian, J. D., Garcia, J. M., Kelly, L. C. & Proctor, D. Clinical experience with the isotopic cardiac pacemaker. Ann. Thorac. Surg. 28, 14–21 (1979). DOI: https://doi.org/10.1016/S0003-4975(10)63384-X

Burr, L. H. The lithium iodide-powered cardiac pacemaker. Clinical experience with 250 implantations. J. Thorac. Cardiovasc. Surg. 73, 421–423 (1977). DOI: https://doi.org/10.1016/S0022-5223(19)39924-6

Mond, H. G. & Freitag, G. The cardiac implantable electronic device power source: evolution and revolution. Pacing Clin. Electrophysiol. 37, 1728–1745 (2014). DOI: https://doi.org/10.1111/pace.12526

Boriani, G. et al. Role of ventricular Autocapture function in increasing longevity of DDDR pacemakers: a prospective study. Europace 8, 216–220 (2006). DOI: https://doi.org/10.1093/europace/euj027

Biffi, M. et al. Actual pacemaker longevity: the benefit of stimulation by automatic capture verification. Pacing Clin. Electrophysiol. 33, 873–881 (2010). DOI: https://doi.org/10.1111/j.1540-8159.2010.02724.x

Milasinovic, G. et al. Percent ventricular pacing with managed ventricular pacing mode in standard pacemaker population. Europace 10, 151–155 (2008). DOI: https://doi.org/10.1093/europace/eum288

Gillis, A. M. et al. Reducing unnecessary right ventricular pacing with the managed ventricular pacing mode in patients with sinus node disease and AV block. Pacing Clin. Electrophysiol. 29, 697–705 (2006). DOI: https://doi.org/10.1111/j.1540-8159.2006.00422.x

Saito, M. et al. Effect of right ventricular pacing on right ventricular mechanics and tricuspid regurgitation in patients with high-grade atrioventricular block and sinus rhythm (from the protection of left ventricular function during right ventricular pacing study). Am. J. Cardiol. 116, 1875–1882 (2015). DOI: https://doi.org/10.1016/j.amjcard.2015.09.041

Ahmed, F. Z. et al. One-month global longitudinal strain identifies patients who will develop pacing-induced left ventricular dysfunction over time: the Pacing and Ventricular Dysfunction (PAVD) Study. PloS ONE 12, e0162072 (2017). DOI: https://doi.org/10.1371/journal.pone.0162072

Madhavan, M., Mulpuru, S. K., McLeod, C. J., Cha, Y. M. & Friedman, P. A. Advances and future directions in cardiac pacemakers: part 2 of a 2-part series. J. Am. Coll. Cardiol. 69, 211–235 (2017). DOI: https://doi.org/10.1016/j.jacc.2016.10.064

Moss, A. J. et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 361, 1329–1338 (2009). DOI: https://doi.org/10.1056/NEJMoa0906431

Bristow, M. R. et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med. 350, 2140–2150 (2004). DOI: https://doi.org/10.1056/NEJMoa032423

Leclercq, C. et al. A randomized comparison of triple-site versus dual-site ventricular stimulation in patients with congestive heart failure. J. Am. Coll. Cardiol. 51, 1455–1462 (2008). DOI: https://doi.org/10.1016/j.jacc.2007.11.074

Turakhia, M. P. et al. Reduced mortality associated with quadripolar compared to bipolar left ventricular leads in cardiac resynchronization therapy. JACC Clin. Electrophysiol. 2, 426–433 (2016). DOI: https://doi.org/10.1016/j.jacep.2016.02.007

Mulpuru, S. K., Cha, Y. M. & Asirvatham, S. J. Synchronous ventricular pacing with direct capture of the atrioventricular conduction system: functional anatomy, terminology, and challenges. Heart Rhythm 13, 2237–2246 (2016). DOI: https://doi.org/10.1016/j.hrthm.2016.08.005

Vijayaraman, P., Dandamudi, G., Worsnick, S. & Ellenbogen, K. A. Acute His-bundle injury current during permanent His-bundle pacing predicts excellent pacing outcomes. Pacing Clin. Electrophysiol. 38, 540–546 (2015). DOI: https://doi.org/10.1111/pace.12571

Mulpuru, S. K., Madhavan, M., McLeod, C. J., Cha, Y. M. & Friedman, P. A. Cardiac pacemakers: function, troubleshooting, and management: part 1 of a 2-part series. J. Am. Coll. Cardiol. 69, 189–210 (2017). DOI: https://doi.org/10.1016/j.jacc.2016.10.061

Boriani, G. & Padeletti, L. Management of atrial fibrillation in bradyarrhythmias. Nat. Rev. Cardiol. 12, 337–349 (2015). DOI: https://doi.org/10.1038/nrcardio.2015.30

Hauser, R. G. et al. Clinical experience with pacemaker pulse generators and transvenous leads: an 8-year prospective multicenter study. Heart Rhythm 4, 154–160 (2007). DOI: https://doi.org/10.1016/j.hrthm.2006.10.009

Sohail, M. R. et al. Management and outcome of permanent pacemaker and implantable cardioverter-defibrillator infections. J. Am. Coll. Cardiol. 49, 1851–1859 (2007). DOI: https://doi.org/10.1016/j.jacc.2007.01.072

Cingolani, E. & Marbán, E. Recreating the sinus node by somatic reprogramming: a dream come true? Rev. Esp. Cardiol. 68, 743–745 (2015). DOI: https://doi.org/10.1016/j.rec.2015.04.011

Baddour, L. M. et al. Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association. Circulation 121, 458–477 (2010). DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.192665

Basar, N. et al. Upper-extremity deep vein thrombosis and downhill esophageal varices caused by long-term pacemaker implantation. Tex. Heart Inst. J. 37, 714–716 (2010).

Delling, F. N. et al. Tricuspid regurgitation and mortality in patients with transvenous permanent pacemaker leads. Am. J. Cardiol. 117, 988–992 (2016). DOI: https://doi.org/10.1016/j.amjcard.2015.12.038

Miller, M. A., Neuzil, P., Dukkipati, S. R. & Reddy, V. Y. Leadless cardiac pacemakers: back to the future. J. Am. Coll. Cardiol. 66, 1179–1189 (2015). DOI: https://doi.org/10.1016/j.jacc.2015.06.1081

Reddy, V. Y. et al. Permanent leadless cardiac pacing: results of the LEADLESS trial. Circulation 129, 1466–1471 (2014). DOI: https://doi.org/10.1161/CIRCULATIONAHA.113.006987

Piccini, J. P. et al. Long-term outcomes in leadless Micra transcatheter pacemakers with elevated thresholds at implantation: results from the Micra Transcatheter Pacing System Global Clinical Trial. Heart Rhythm 14, 685–691 (2017). DOI: https://doi.org/10.1016/j.hrthm.2017.01.026

Published

09-01-2018

How to Cite

Alhazami, A. E., Alabeidi, F., Alosaimi, F. M., Alshammari, I. F., Alamri, A. M. M., Alsaeed, S. A., Al Nemer, A. A. R., Alshammari, M. T. S., & Albabtain, M. I. S. (2018). Pacemakers, and heart failure monitoring devices-controlling medications and updating readings-role of pharmacists. International Journal of Health Sciences, 2(S1), 313–328. https://doi.org/10.53730/ijhs.v2nS1.15257

Issue

Section

Peer Review Articles

Most read articles by the same author(s)

1 2 > >>