Pacemakers, and heart failure monitoring devices-controlling medications and updating readings-role of pharmacists
Keywords:
Pacemakers, Heart Failure, Pharmacists, Medication Management, Cardiac Conduction Disorders, Patient CareAbstract
Background: Pacemakers and heart failure monitoring devices are critical in managing bradycardia and other cardiac conduction disorders. While conventional electronic pacemakers are effective, they present several challenges, including lead malfunction and infection risks. Aim: This review aims to evaluate the evolving role of pharmacists in managing patients with implanted pacemakers and heart failure monitoring devices, focusing on medication management and monitoring. Methods: The article reviews current literature on the functionality and advancements in pacemaker technology, the pathophysiology of conduction disorders, and the implications for pharmacological interventions. Results: Pharmacists play a crucial role in ensuring optimal medication therapy management, especially regarding anticoagulants, antiarrhythmics, and heart failure medications. They monitor drug interactions, manage side effects, and assess adherence to treatment regimens. The integration of novel pharmacological agents, such as ivabradine, offers additional strategies for heart rate control, enhancing patient outcomes. Conclusion: The role of pharmacists is evolving in the context of pacemaker management, emphasizing the importance of comprehensive medication reviews, patient education, and interdisciplinary collaboration to improve health outcomes for patients with heart devices.
Downloads
References
Miranda, J. O., Ramalho, C., Henriques-Coelho, T. & Areias, J. C. Fetal programming as a predictor of adult health or disease: the need to reevaluate fetal heart function. Heart Fail. Rev. 22, 861–877 (2017). DOI: https://doi.org/10.1007/s10741-017-9638-z
Friedman, D., Duncanson, L., Glickstein, J. & Buyon, J. A review of congenital heart block. Images Paediatr. Cardiol. 5, 36–48 (2003).
Marban, E. Cardiac channelopathies. Nature 415, 213–218 (2002). DOI: https://doi.org/10.1038/415213a
Bers, D. M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002). DOI: https://doi.org/10.1038/415198a
Crick, S. J. et al. Innervation of the human cardiac conduction system. A quantitative immunohistochemical and histochemical study. Circulation 89, 1697–1708 (1994). DOI: https://doi.org/10.1161/01.CIR.89.4.1697
Anderson, R. H., Yanni, J., Boyett, M. R., Chandler, N. J. & Dobrzynski, H. The anatomy of the cardiac conduction system. Clin. Anat. 22, 99–113 (2009). DOI: https://doi.org/10.1002/ca.20700
Anderson, R. H. & Ho, S. Y. The architecture of the sinus node, the atrioventricular conduction axis, and the internodal atrial myocardium. J. Cardiovasc. Electrophysiol. 9, 1233–1248 (1998). DOI: https://doi.org/10.1111/j.1540-8167.1998.tb00097.x
Epstein, J. A. Franklin, H. Epstein Lecture. Cardiac development and implications for heart disease. N. Engl. J. Med. 363, 1638–1647 (2010). DOI: https://doi.org/10.1056/NEJMra1003941
van Weerd, J. H. & Christoffels, V. M. The formation and function of the cardiac conduction system. Development 143, 197–210 (2016). DOI: https://doi.org/10.1242/dev.124883
Ionta, V. et al. SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability. Stem Cell Rep. 4, 129–142 (2015). DOI: https://doi.org/10.1016/j.stemcr.2014.11.004
Kapoor, N., Liang, W., Marban, E. & Cho, H. C. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat. Biotechnol. 31, 54–62 (2013). DOI: https://doi.org/10.1038/nbt.2465
Liang, W., Cho, H. C. & Marban, E. Wnt signalling suppresses voltage-dependent Na+ channel expression in postnatal rat cardiomyocytes. J. Physiol. 593, 1147–1157 (2015). DOI: https://doi.org/10.1113/jphysiol.2014.285551
Christoffels, V. M. & Moorman, A. F. Development of the cardiac conduction system: why are some regions of the heart more arrhythmogenic than others? Circul. Arrhythmia Electrophysiol. 2, 195–207 (2009). DOI: https://doi.org/10.1161/CIRCEP.108.829341
Eisner, D. A. & Cerbai, E. Beating to time: calcium clocks, voltage clocks, and cardiac pacemaker activity. Am. J. Physiol. Heart Circ. Physiol. 296, H561–H562 (2009). DOI: https://doi.org/10.1152/ajpheart.00056.2009
DiFrancesco, D. Characterization of single pacemaker channels in cardiac sino-atrial node cells. Nature 324, 470–473 (1986). DOI: https://doi.org/10.1038/324470a0
Mangoni, M. E. et al. Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc. Natl Acad. Sci. USA 100, 5543–5548 (2003). DOI: https://doi.org/10.1073/pnas.0935295100
Huser, J. et al. Functional coupling between glycolysis and excitation-contraction coupling underlies alternans in cat heart cells. J. Physiol. 524, 795–806 (2000). DOI: https://doi.org/10.1111/j.1469-7793.2000.00795.x
Bogdanov, K. Y., Vinogradova, T. M. & Lakatta, E. G. Sinoatrial nodal cell ryanodine receptor and Na+-Ca2+ exchanger: molecular partners in pacemaker regulation. Circul. Res. 88, 1254–1258 (2001). DOI: https://doi.org/10.1161/hh1201.092095
Groenke, S. et al. Complete atrial-specific knockout of sodium-calcium exchange eliminates sinoatrial node pacemaker activity. PloS ONE 8, e81633 (2013). DOI: https://doi.org/10.1371/journal.pone.0081633
Torrente, A. G. et al. Burst pacemaker activity of the sinoatrial node in sodium-calcium exchanger knockout mice. Proc. Natl Acad. Sci. USA 112, 9769–9774 (2015). DOI: https://doi.org/10.1073/pnas.1505670112
DiFrancesco, D. & Borer, J. S. The funny current: cellular basis for the control of heart rate. Drugs 67 (Suppl. 2), 15–24 (2007). DOI: https://doi.org/10.2165/00003495-200767002-00003
Walsh, K. B. & Kass, R. S. Regulation of a heart potassium channel by protein kinase A and C. Science 242, 67–69 (1988). DOI: https://doi.org/10.1126/science.2845575
Monfredi, O., Maltsev, V. A. & Lakatta, E. G. Modern concepts concerning the origin of the heartbeat. Physiology 28, 74–92 (2013). DOI: https://doi.org/10.1152/physiol.00054.2012
Vinogradova, T. M. et al. High basal protein kinase A-dependent phosphorylation drives rhythmic internal Ca2+ store oscillations and spontaneous beating of cardiac pacemaker cells. Circul. Res. 98, 505–514 (2006). DOI: https://doi.org/10.1161/01.RES.0000204575.94040.d1
Bleiziffer, S. et al. Predictors for new-onset complete heart block after transcatheter aortic valve implantation. JACC Cardiovasc. Interv. 3, 524–530 (2010). DOI: https://doi.org/10.1016/j.jcin.2010.01.017
Izmirly, P. M. et al. Clinical and pathologic implications of extending the spectrum of maternal autoantibodies reactive with ribonucleoproteins associated with cutaneous and now cardiac neonatal lupus from SSA/Ro and SSB/La to U1RNP. Autoimmun. Rev. 16, 980–983 (2017). DOI: https://doi.org/10.1016/j.autrev.2017.07.013
Ramos, S., Matturri, L., Rossi, L. & Rossi, M. Scleroatrophy of the atrioventricular junctional specialized tissue (Lenegre-Lev Disease) in chronic chagas' heart disease. Acta Cardiol. 50, 483–487 (1995).
Epstein, A. E. et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 61, e6–e75 (2013). DOI: https://doi.org/10.1016/j.jacc.2012.11.007
Greenspon, A. J. et al. Trends in permanent pacemaker implantation in the United States from 1993 to 2009: increasing complexity of patients and procedures. J. Am. Coll. Cardiol. 60, 1540–1545 (2012). DOI: https://doi.org/10.1016/S0735-1097(12)60704-9
Aquilina, O. A brief history of cardiac pacing. Images Paediatr. Cardiol. 8, 17–81 (2006).
van Hemel, N. M. & van der Wall, E. E. 8 October 1958, D Day for the implantable pacemaker. Neth. Heart J. 16 (Suppl. 1), S3–S4 (2008). DOI: https://doi.org/10.1007/BF03086195
Larsson, B., Elmqvist, H., Rydén, L. & Schüller, H. Lessons from the first patient with an implanted pacemaker: 1958–2001. Pacing Clin. Electrophysiol. 26, 114–124 (2003). DOI: https://doi.org/10.1046/j.1460-9592.2003.00162.x
Chardack, W. M., Gage, A. A. & Greatbatch, W. A transistorized, self-contained, implantable pacemaker for the long-term correction of complete heart block. Surgery 48, 643–654 (1960).
Parsonnet, V., Driller, J., Cook, D. & Rizvi, S. A. Thirty-one years of clinical experience with “nuclear-powered” pacemakers. Pacing Clin. Electrophysiol. 29, 195–200 (2006). DOI: https://doi.org/10.1111/j.1540-8159.2006.00317.x
Smyth, N. P., Keshishian, J. D., Garcia, J. M., Kelly, L. C. & Proctor, D. Clinical experience with the isotopic cardiac pacemaker. Ann. Thorac. Surg. 28, 14–21 (1979). DOI: https://doi.org/10.1016/S0003-4975(10)63384-X
Burr, L. H. The lithium iodide-powered cardiac pacemaker. Clinical experience with 250 implantations. J. Thorac. Cardiovasc. Surg. 73, 421–423 (1977). DOI: https://doi.org/10.1016/S0022-5223(19)39924-6
Mond, H. G. & Freitag, G. The cardiac implantable electronic device power source: evolution and revolution. Pacing Clin. Electrophysiol. 37, 1728–1745 (2014). DOI: https://doi.org/10.1111/pace.12526
Boriani, G. et al. Role of ventricular Autocapture function in increasing longevity of DDDR pacemakers: a prospective study. Europace 8, 216–220 (2006). DOI: https://doi.org/10.1093/europace/euj027
Biffi, M. et al. Actual pacemaker longevity: the benefit of stimulation by automatic capture verification. Pacing Clin. Electrophysiol. 33, 873–881 (2010). DOI: https://doi.org/10.1111/j.1540-8159.2010.02724.x
Milasinovic, G. et al. Percent ventricular pacing with managed ventricular pacing mode in standard pacemaker population. Europace 10, 151–155 (2008). DOI: https://doi.org/10.1093/europace/eum288
Gillis, A. M. et al. Reducing unnecessary right ventricular pacing with the managed ventricular pacing mode in patients with sinus node disease and AV block. Pacing Clin. Electrophysiol. 29, 697–705 (2006). DOI: https://doi.org/10.1111/j.1540-8159.2006.00422.x
Saito, M. et al. Effect of right ventricular pacing on right ventricular mechanics and tricuspid regurgitation in patients with high-grade atrioventricular block and sinus rhythm (from the protection of left ventricular function during right ventricular pacing study). Am. J. Cardiol. 116, 1875–1882 (2015). DOI: https://doi.org/10.1016/j.amjcard.2015.09.041
Ahmed, F. Z. et al. One-month global longitudinal strain identifies patients who will develop pacing-induced left ventricular dysfunction over time: the Pacing and Ventricular Dysfunction (PAVD) Study. PloS ONE 12, e0162072 (2017). DOI: https://doi.org/10.1371/journal.pone.0162072
Madhavan, M., Mulpuru, S. K., McLeod, C. J., Cha, Y. M. & Friedman, P. A. Advances and future directions in cardiac pacemakers: part 2 of a 2-part series. J. Am. Coll. Cardiol. 69, 211–235 (2017). DOI: https://doi.org/10.1016/j.jacc.2016.10.064
Moss, A. J. et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 361, 1329–1338 (2009). DOI: https://doi.org/10.1056/NEJMoa0906431
Bristow, M. R. et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med. 350, 2140–2150 (2004). DOI: https://doi.org/10.1056/NEJMoa032423
Leclercq, C. et al. A randomized comparison of triple-site versus dual-site ventricular stimulation in patients with congestive heart failure. J. Am. Coll. Cardiol. 51, 1455–1462 (2008). DOI: https://doi.org/10.1016/j.jacc.2007.11.074
Turakhia, M. P. et al. Reduced mortality associated with quadripolar compared to bipolar left ventricular leads in cardiac resynchronization therapy. JACC Clin. Electrophysiol. 2, 426–433 (2016). DOI: https://doi.org/10.1016/j.jacep.2016.02.007
Mulpuru, S. K., Cha, Y. M. & Asirvatham, S. J. Synchronous ventricular pacing with direct capture of the atrioventricular conduction system: functional anatomy, terminology, and challenges. Heart Rhythm 13, 2237–2246 (2016). DOI: https://doi.org/10.1016/j.hrthm.2016.08.005
Vijayaraman, P., Dandamudi, G., Worsnick, S. & Ellenbogen, K. A. Acute His-bundle injury current during permanent His-bundle pacing predicts excellent pacing outcomes. Pacing Clin. Electrophysiol. 38, 540–546 (2015). DOI: https://doi.org/10.1111/pace.12571
Mulpuru, S. K., Madhavan, M., McLeod, C. J., Cha, Y. M. & Friedman, P. A. Cardiac pacemakers: function, troubleshooting, and management: part 1 of a 2-part series. J. Am. Coll. Cardiol. 69, 189–210 (2017). DOI: https://doi.org/10.1016/j.jacc.2016.10.061
Boriani, G. & Padeletti, L. Management of atrial fibrillation in bradyarrhythmias. Nat. Rev. Cardiol. 12, 337–349 (2015). DOI: https://doi.org/10.1038/nrcardio.2015.30
Hauser, R. G. et al. Clinical experience with pacemaker pulse generators and transvenous leads: an 8-year prospective multicenter study. Heart Rhythm 4, 154–160 (2007). DOI: https://doi.org/10.1016/j.hrthm.2006.10.009
Sohail, M. R. et al. Management and outcome of permanent pacemaker and implantable cardioverter-defibrillator infections. J. Am. Coll. Cardiol. 49, 1851–1859 (2007). DOI: https://doi.org/10.1016/j.jacc.2007.01.072
Cingolani, E. & Marbán, E. Recreating the sinus node by somatic reprogramming: a dream come true? Rev. Esp. Cardiol. 68, 743–745 (2015). DOI: https://doi.org/10.1016/j.rec.2015.04.011
Baddour, L. M. et al. Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association. Circulation 121, 458–477 (2010). DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.192665
Basar, N. et al. Upper-extremity deep vein thrombosis and downhill esophageal varices caused by long-term pacemaker implantation. Tex. Heart Inst. J. 37, 714–716 (2010).
Delling, F. N. et al. Tricuspid regurgitation and mortality in patients with transvenous permanent pacemaker leads. Am. J. Cardiol. 117, 988–992 (2016). DOI: https://doi.org/10.1016/j.amjcard.2015.12.038
Miller, M. A., Neuzil, P., Dukkipati, S. R. & Reddy, V. Y. Leadless cardiac pacemakers: back to the future. J. Am. Coll. Cardiol. 66, 1179–1189 (2015). DOI: https://doi.org/10.1016/j.jacc.2015.06.1081
Reddy, V. Y. et al. Permanent leadless cardiac pacing: results of the LEADLESS trial. Circulation 129, 1466–1471 (2014). DOI: https://doi.org/10.1161/CIRCULATIONAHA.113.006987
Piccini, J. P. et al. Long-term outcomes in leadless Micra transcatheter pacemakers with elevated thresholds at implantation: results from the Micra Transcatheter Pacing System Global Clinical Trial. Heart Rhythm 14, 685–691 (2017). DOI: https://doi.org/10.1016/j.hrthm.2017.01.026
Published
How to Cite
Issue
Section
Copyright (c) 2018 International journal of health sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.