Advances in digital dentistry: Impact of different technologies
Keywords:
Digital Dentistry, CAD/CAM Systems, Intraoral Scanners, Additive Manufacturing, Workflow Optimization, Computer-Assisted Surgery, Digital PatientAbstract
Background: Digital technologies have revolutionized various fields, and dentistry is no exception. The integration of advanced digital systems into dental practice has significantly transformed clinical workflows and patient care. This review explores the impact of different digital technologies on dentistry, emphasizing the progress and current state of digital systems. Aim: The aim of this review is to examine the advancements in digital dentistry, focusing on key technologies such as CAD/CAM systems, imaging technologies, and practice management software, and their implications for clinical practice and material science. Methods: The review synthesizes information from a range of sources, including historical developments and current technological innovations in digital dentistry. Key areas of focus include intraoral and laboratory scanners, CAD/CAM systems, additive manufacturing, and workflow optimization.
Downloads
References
Internet World Stats. (2019). Internet world stats: Usage and population statistics. Miniwatts Marketing Group. Retrieved July 30, 2019, from https://www.internetworldstats.com/stats.htm
Amazon. (2019). The best voice assistants. Retrieved July 2019, from https://www.reviews.com/voice-assistant/
Sleep Number. (2017). How to stop snoring: Solution to snore no more. Retrieved July 2019, from https://sleepnumber.com/360
Baca, M. C. (2019, July 18). Baby’s first smart diaper: Pampers takes ‘wearables’ to a whole new level. The Washington Post.
Colon, A., & Griffith, E. (2019, July 18). The best smart home devices for 2019. PC Magazine. Retrieved from https://www.pcmag.com/article/303814/the-best-smart-home-devices-for-2019
Mormann, W. H., Brandestini, M., & Lutz, F. (1987). The Cerec system: Computer-assisted preparation of direct ceramic inlays in one setting. Quintessenz, 38, 457–470.
Andersson, M., Carlsson, L., Persson, M., & Bergman, B. (1996). Accuracy of machine milling and spark erosion with a CAD/CAM system. Journal of Prosthetic Dentistry, 76, 187–193.
Giordano, R. (2006). Materials for chairside CAD/CAM-produced restorations. Journal of the American Dental Association, 137(Suppl.), 14S–21S. https://doi.org/10.14219/jada.archive.2006.0397
Rekow, D. (Ed.). (2018). CAD/CAM systems: A paradigm shift in restorations design and production. In Digital dentistry: A comprehensive reference and preview of the future (pp. 63–84). Quintessence.
O’Neill, N. (2018). Digital radiography. In D. Rekow (Ed.), Digital dentistry: A comprehensive reference and preview of the future (pp. 41–50). Quintessence.
Dick, R. S., & Steen, E. B. (1991). The computer-based patient record: An essential technology for health care. The National Academies Press. https://doi.org/10.17226/18459
Blatz, M. B., & Conejo, J. (2019). The current state of chairside digital dentistry and materials. Dental Clinics of North America, 63, 175–197. https://doi.org/10.1016/j.cden.2018.11.002
3Shape. (2019). 3Shape trios intraoral scanners. Retrieved July 30, 2019, from https://www.3shape.com/en/scanners/trios
Adin. (2019). ADIN VIZ intraoral scanner: A mouthful of advantages. Retrieved July 2019, from https://www.adi-implans.com/product/intra-oral-scanner/
Align Technology. (2019). ITero: More capabilities for your practice. Align Technology, Inc. Retrieved July 30, 2019, from http://itero.com/en-us
G.C. Corporation. (2019). IOS from CG: Intra-oral scanning system. Retrieved July 2019, from https://www.gceurope.com/products/aadvaios/
Condor. (2019). Condor intraoral scanner. Retrieved July 30, 2019, from https://www.condorscan.com/scanner/product-overview
Carestream. (2019). CS3600 for dental restorations. Retrieved July 2019, from https://www.carestreamdental.com/en-us/products/intraoral-scanners/cs-3600-dental/
Fona Dental. (2017). New dental product: MyCrown CAD/CAM system from FONA Dental. In D. Dentalcompare (Ed.), DC Dentalcompare. Retrieved July 2019, from https://www.dentalcompare.com/News/225801-Nw-Dental-Product-MyCrown-CAD-CAM-Sysem-from-FONA-Dental
3M ESPE. (2019). 3M mobile true definition scanner. Retrieved July 2019, from https://www.3m.com/3M/en US/company-us/all-3m-products/∼/
Hsuan. (2019). CEREC Digest’s top ten intraoral scanners of 2019. Retrieved July 2019, from htps://www.cerecdigest.net/2019/06/03/our-top-ten-intraoral-scanners-of-2019/
Hsuan. (2017). Review of intraoral scanners at IDS 2017. In Cerec Digest. Retrieved July 2019, from https://www.cerecdigest.net/2017/04/14/ids-2017-intraoral-scanners-review-revised/
Sailer, I. (2018). Intraoral scanners: Enhancing dentistry’s image. In D. Rekow (Ed.), Digital dentistry: A comprehensive reference and preview of the future (pp. 19–40). Quintessence.
Sirona D. (2019). CEREC omnicam. Dentsply Sirona. Retrieved July 2019, from https://www.dentsplysirona.com/en/explore/cerec/scan-with-cerec.html
Fona Dental. (2019). MyCrown. Retrieved July 2019, from https://www.fonadental.com/wp-content/uploads/2017/05/FONA_Brochure_MyCrown_ENG_v1.pdf
Planmeca. (2019). Planmeca Emerald: Intraoral scanner for brilliant results. Retrieved July 2019, from https://www.planmeca.co/cadcam/dental-scanning/planmeca-emerald/
Dental Wings. (2019). Intraoral scanner user manual EN (v1.5). Retrieved July 2019, from https://ifu.straumann.com/content/dam/internet/straumann_ifu/cares/Intraoral%20Scanner%20User%20Manual%20EN%20(v.1.5).pdf
Kirschneck, C., Kamuf, B., Putsch, C., Chhatwani, S., Bizhang, M., & Danesh, G. (2018). Conformity, reliability and validity of digital dental models created by clinical intraoral scanning and extraoral plaster model digitization workflows. Computers in Biology and Medicine, 100, 114–122. https://doi.org/10.1016/j.compbiomed.2018.06.035
Lee, K. M. (2018). Comparison of two intraoral scanners based on three-dimensional surface analysis. Progress in Orthodontics, 19, 6. https://doi.org/10.1186/s40510-018-0205-5
Mennito, A. S., Evans, Z. P., Nash, J., Bocklet, C., Lauer, K. A., Bacro, T., et al. (2019). Evaluation of the trueness and precision of complete arch digital impressions on a human maxilla using seven different intraoral digital impression systems and a laboratory scanner. Journal of Esthetic and Restorative Dentistry, 31(4), 369–377. https://doi.org/10.1111/jerd.12485
Sason, G. K., Mistry, G., Tabassum, R., & Shetty, O. (2018). A comparative evaluation of intraoral and extraoral digital impressions: An in vivo study. Journal of the Indian Prosthodontic Society, 18, 108–116. https://doi.org/10.4103/jips.jips_224_17
Kim, R. J., Park, J. M., & Shim, J. S. (2018). Accuracy of 9 intraoral scanners for complete-arch image acquisition: A qualitative and quantitative evaluation. Journal of Prosthetic Dentistry, 120, 895–903.e1. https://doi.org/10.1016/j.prosdent.2018.01.035
Latham, J., Ludlow, M., Mennito, A., Kelly, A., Evans, Z., & Renne, W. (2019). Effect of scan pattern on complete-arch scans with 4 digital scanners. Journal of Prosthetic Dentistry. https://doi.org/10.1016/j.prosdent.2019.02.008
Mennito, A. S., Evans, Z. P., Lauer, A. W., Patel, R. B., Ludlow, M. E., & Renne, W. G. (2018). Evaluation of the effect scan pattern has on the trueness and precision of six intraoral digital impression systems. Journal of Esthetic and Restorative Dentistry, 30, 113–118. https://doi.org/10.1111/jerd.12371
Abdel-Azim, T., Rogers, K., Elathamna, E., Zandinejad, A., Metz, M., & Morton, D. (2015). Comparison of the marginal fit of lithium disilicate crowns fabricated with CAD/CAM technology by using conventional impressions and two intraoral digital scanners. Journal of Prosthetic Dentistry, 114, 554–559. https://doi.org/10.1016/j.prosdent.2015.04.001
Ahrberg, D., Lauer, H. C., Ahrberg, M., & Weigl, P. (2016). Evaluation of fit and efficiency of CAD/CAM fabricated all-ceramic restorations based on direct and indirect digitalization: A double-blinded, randomized clinical trial. Clinical Oral Investigations, 20, 291–300. https://doi.org/10.1007/s00784-015-1504-6
Contrepois, M., Soenen, A., Bartala, M., & Laviole, O. (2013). Marginal adaptation of ceramic crowns: A systematic review. Journal of Prosthetic Dentistry, 110, 447–454.e10. https://doi.org/10.1017/j.prosdent.2013.08.003
Pradies, G., Zarauz, C., Valverde, A., Ferreiroa, A., & Martinez-Rus, F. (2015). Clinical evaluation comparing the fit of all-ceramic crowns obtained from silicone and digital intraoral impressions based on wavefront sampling technology. Journal of Dentistry, 43, 201–208. https://doi.org/10.1016/j.dent.2014.12.007
Rodiger, M., Heinitz, A., Burgers, R., & Rinke, S. (2017). Fitting accuracy of zirconia single crowns produced via digital and conventional impressions — A clinical comparative study. Clinical Oral Investigations, 21, 579–587. https://doi.org/10.1007/s00784-016-1924-y
Shembesh, M., Ali, A., Finkelman, M., Weber, H. P., & Zandparsa, R. (2016). An in vitro comparison of the marginal adaptation accuracy of CAD/CAM restorations using different impression systems. Journal of Prosthodontics, 26(7), 581–586. https://doi.org/10.1111/jopr.12446
Su, T. S., & Sun, J. (2016). Comparison of marginal and internal fit of 3-unit ceramic fixed dental prostheses made with either a conventional or digital impression. Journal of Prosthetic Dentistry, 116, 362–367. https://doi.org/10.1016/j.prosdent.2016.01.018
Tamim, H., Skjerven, H., Ekfeldt, A., & Ronold, H. J. (2014). Clinical evaluation of CAD/CAM metal-ceramic posterior crowns fabricated from intraoral digital impressions. International Journal of Prosthodontics, 27, 331–337. https://doi.org/10.11607/ijp.3607
Tsirogiannis, P., Reissmann, D. R., & Heydecke, G. (2016). Evaluation of the marginal fit of single-unit, complete-coverage ceramic restorations fabricated after digital and conventional impressions: A systematic review and meta-analysis. Journal of Prosthetic Dentistry, 116, 328–335.e2. https://doi.org/10.1016/j.prosdent.2016.01.028
Juntavee, N., & Sirisathit, I. (2018). Internal accuracy of digitally fabricated cross-arch yttria-stabilized tetragonal zirconia polycrystalline prosthesis. Clinical Cosmetic and Investigational Dentistry, 10, 129–140. https://doi.org/10.2147/CCIDES.S168830
Ng, J., Ruse, D., & Wyatt, C. (2014). A comparison of the marginal fit of crowns fabricated with digital and conventional methods. Journal of Prosthetic Dentistry, 112, 555–560. https://doi.org/10.1016/j.prosdent.2013.12.002
Benic, G. I., Sailer, I., Zeltner, M., Gutermann, J. N., Ozcan, M., & Muhlemann, S. (2019). Randomized controlled clinical trial of digital and conventional workflows for the fabrication of zirconia-ceramic fixed partial dentures. Part III: Marginal and internal fit. Journal of Prosthetic Dentistry, 121, 426–431. https://doi.org/10.1016/j.prosdent.2018.05.014
Bohner, L., Gamba, D. D., Hanisch, M., Marcio, B. S., Tortamano Neto, P., Lagana, D. C., et al. (2019). Accuracy of digital technologies for the scanning of facial, skeletal, and intraoral tissues: A systematic review. Journal of Prosthetic Dentistry, 121, 246–251. https://doi.org/10.1016/j.prosdent.2018.01.015
Compare, D. (2019). Dental laboratory CAD/CAM systems. Dental Compare. Retrieved from http://www.dentalcompare.com/Dental-Lab-Products/4694-Dental-Laboratory-CAD-CAM-Systems
DC Dentalcompare. (2019). Dental laboratory 3D scanning systems. Retrieved July 29, 2019, from https://www.dentalcompare.com/Dental-Digital-Imaging-Dental-Imaging/4723-Laboratory-3D-Scanning-Systems/
Mandelli,F., Gherlone, E., Gastaldi, G., & Ferrari, M. (2017). Evaluation of the accuracy of extraoral laboratory scanners with a single-tooth abutment model: A 3D analysis. Journal of Prosthodontic Research, 61, 363–370. https://doi.org/10.1016/j.jpor.2016.09.002
Peng, L., Chen, L., Harris, B. T., Bhandari, B., Morton, D., & Lin, W. S. (2018). Accuracy and reproducibility of virtual edentulous casts created by laboratory impression scan protocols. Journal of Prosthetic Dentistry, 120, 389–395. https://doi.org/10.1016/j.prosdent.2017.11.024
Ueno, D., Kobayashi, M., Tanaka, K., Watanabe, T., Nakamura, T., Ueda, K., et al. (2018). Measurement accuracy of alveolar soft tissue contour using a laboratory laser scanner. Odontology, 106, 202–207. https://doi.org/10.1007/s10266-017-0315-4
Institute of Digital Dentistry. (2019). CAD/CAM news from IDS 2019 in Cologne, Germany. Institute of Digital Dentistry. Retrieved from https://instituteofdigitaldentistry.com/news/cad-cam-news-from-ids-2019-in-cologne-germany/
Charavet, C., Bernard, J. C., Gaillard, C., & Le Gall, M. (2019). Benefits of Digital Smile Design (DSD) in the conception of a complex orthodontic treatment plan: A case report-proof of concept. International Orthodontics, 17(3), 573–579. https://doi.org/10.1016/j.ortho.2019.06.019
Garcia, P. P., da Costa, R. G., Calgaro, M., Ritter, A. V., Correr, G. M., & da Cunha, L. F., et al. (2018). Digital smile design and mock-up technique for esthetic treatment planning with porcelain laminate veneers. Journal of Conservative Dentistry, 21, 455–458. https://doi.org/10.4103/JCD.JCD-172-18
Lin, W. S., Harris, B. T., Phasuk, K., Llop, D. R., & Morton, D. (2018). Integrating a facial scan, virtual smile design, and 3D virtual patient for treatment with CAD-CAM ceramic veneers: A clinical report. Journal of Prosthetic Dentistry, 119, 200–205. https://doi.org/10.1016/j.prosdent.2017.03.007
Pozzi, A., Arcuri, L., & Moy, P. K. (2018). The smiling scan technique: Facially driven guided surgery and prosthetics. Journal of Prosthodontic Research, 62, 514–517. https://doi.org/10.1016/j.jpor.2018.03.004
Seay, A. (2018). Utilizing digital technology to facilitate dentofacial integration. Compendium of Continuing Education in Dentistry, 39, 696–704.
McLaren, E. A., & Goldstein, R. E. (2018). The Photoshop smile design technique. Compendium of Continuing Education in Dentistry, 39, e17–e20.
Omar, D., & Duarte, C. (2018). The application of parameters for comprehensive smile esthetics by digital smile design programs: A review of literature. Saudi Dental Journal, 30, 7–12. https://doi.org/10.1016/j.sdentj.2017.09.001
Guichet, D. L. (2019). Digital workflows in the management of the esthetically discriminating patient. Dental Clinics of North America, 63, 331–344. https://doi.org/10.1016/j.cden.2018.11.011
Lam, W. Y. H., Hsung, R. T. C., Cheng, L. Y. Y., & Pow, E. H. N. (2018). Mapping intraoral photographs on virtual teeth model. Journal of Dentistry, 79, 107–110. https://doi.org/10.1016/j.jdent.2019.09.009
Sampaio, C. S., Atria, P. J., Hirata, R., & Jorquera, G. (2019). Variability of color matching with different digital photography techniques and a gray reference card. Journal of Prosthetic Dentistry, 121, 333–339. https://doi.org/10.1016/j.prosdent.2018.03.009
Kwon, J. H., Im, S., Chang, M., Kim, J. E., & Shim, J. S. (2019). A digital approach to dynamic jaw tracking using a target tracking system and a structured-light three-dimensional scanner. Journal of Prosthodontic Research, 63, 115–119. https://doi.org/10.1016/j.jpor.2018.05.001
Lepidi, L., Chen, Z., Ravida, A., Lan, T., Wang, H. L., & Li, J. (2019). A full-digital technique to mount a maxillary arch scan on a virtual articulator. Journal of Prosthodontics, 28, 335–338. https://doi.org/10.1111/jopr.13023
Merklein, M., Junker, D., Schaub, A., & Neubaure, F. (2016). Hybrid additive manufacturing technologies—An analysis regarding potentials and applications. Physics Procedia, 83, 549–559.
Kessler, A., Hickel, R., & Reymus, M. (2019). 3D printing in dentistry—State of the art. Operative Dentistry. https://doi.org/10.2341/18.229-L
Laverty, D. P., Thomas, M. B. M., Clark, P., & Addy, L. D. (2016). The use of 3D metal printing (direct metal laser sintering) in removable prosthodontics. Dental Update, 43, 826–828, 831–832, 834–835. https://doi.org/10.12968/denu.2016.42.9.826
Revilla-Leon, M., Klemm, I. M., Garcia-Arranz, J., & Ozcan, M. (2017). 3D metal printing—Additive manufacturing technologies for frameworks of implant-borne fixed dental prosthesis. European Journal of Prosthodontics and Restorative Dentistry, 25, 143–147. https://doi.org/10.1111/jor.12801
Thompson, I., Walker, M., & Zeolla, J. (2018). 3D printing in dentistry. In D. Rekow (Ed.), Digital Dentistry: A Comprehensive Reference and Preview of the Future (pp. 215–226). Quintessence Publishing.
Galante, R., Figueiredo-Pina, C. G., & Serro, A. P. (2019). Additive manufacturing of ceramics for dental applications: A review. Dental Materials, 35(7), 825–846. https://doi.org/10.1016/j.dental.2019.02.026
Revilla-Leon, M., Meyer, M. J., & Ozcan, M. (2019). Metal additive manufacturing technologies: Literature review of current status and prosthodontic applications. International Journal of Computerized Dentistry, 22(1), 55–67.
Invisalign. (2019). History of Invisalign. Retrieved August 2019, from https://www.johnsoneliteortho.com/the-history-of-invisalign/
Anonymous. (2017). IDS 2017 digital workflow solutions. Inside Dental Technology, 8, 5.
Bae, E. J., Jeong, I. D., Kim, W. C., & Kim, J. H. (2017). A comparative study of additive and subtractive manufacturing for dental restorations. Journal of Prosthetic Dentistry, 118(2), 187–193. htts://doi.org/10.1016/j.prosdent.2016.11.004
Eftekhar, A. R., Nasiri Khanlar, L., Mahshid, M., & Moshaverinia, A. (2018). Comparison of dimensional accuracy of conventionally and digitally manufactured intracoronal restorations. Journal of Prosthetic Dentistry, 119(2), 233–238. https://doi.org/10.1016/j.prosdent.2017.02.014
Neumeister, A., Schulz, L., & Glodecki, C. (2017). Investigations on the accuracy of 3D-printed drill guides for dental implantology. International Journal of Computerized Dentistry, 20(1), 35–51.
Huettig, F., Kustermann, A., Kuscu, E., Geis-Gerstorfer, J., & Spintzyk, S. (2017). Polishability and wear resistance of splint material for oral appliances produced with conventional, subtractive, and additive manufacturing. Journal of the Mechanical Behavior of Biomedical Materials, 75, 175–179. https://doi.org/10.1016/j.jmbbm.2017.07.019
Wang, W., Yu, H., Liu, Y., Jiang, X., & Gao, B. (2019). Trueness analysis of zirconia crowns fabricated with 3-dimensional printing. Journal of Prosthetic Dentistry, 121(2), 285–291. https://doi.org/10.1016/j.prosdent.2018.04.012
Thakur, A., Chauhan, D., Viswambaran, M., Yadav, R. K., & Sharma, D. (2019). Rapid prototyping technology for cranioplasty: A case series. Journal of Indian Prosthodontic Society, 19(2), 184–189. https://doi.org/10.4103/jips.jips_295_18
Almufleh, B., Emami, E., Alageel, O., de Melo, F., Seng, F., Caron, E., et al. (2017). Patient satisfaction with laser-sintered removable partial dentures: A crossover pilot clinical trial. Journal of Prosthetic Dentistry, 119(4), 560–567.e1. https://doi.org/10.1016/j.prosdent.2017.04.021
Kamio, T., Hayashi, K., Onda, T., Takaki, T., Shibahara, T., Yakushiji, T., et al. (2018). Utilizing a low-cost desktop 3D printer to develop a one-stop "3D printing lab" for oral and maxillofacial surgery and dentistry fields. 3D Printing in Medicine, 4(1), 6. https://doi.org/10.1186/s41205-018-0028-5
Moser, N., Santander, P., & Quast, A. (2018). From 3D imaging to 3D printing in dentistry — A practical guide. International Journal of Computerized Dentistry, 21(4), 345–356.
Tahayeri, A., Morgan, M., Fugolin, A. P., Bompolaki, D., Athirasala, A., Pfeifer, C. S., et al. (2018). 3D printed versus conventionally cured provisional crown and bridge dental materials. Dental Materials, 34(2), 192–200. https://doi.org/10.1016/j.dental.2017.10.003
Russo, L. L., Zhurakivska, K., Speranza, D., Salamini, A., Ciavarella, D., Ciaramella, S., et al. (2018). A comparison among additive manufactured polymeric complete dental models resulting from intraoral scans: An in vivo study. International Review of Model and Simulation, 11(1), 1–12. https://doi.org/10.15855/iremos.v11i1.14186
Rebong, R. E., Stewart, K. T., Utreja, A., & Ghoneima, A. A. (2018). Accuracy of three-dimensional dental resin models created by fused deposition modeling, stereolithography, and polyjet prototype technologies: A comparative study. Angle Orthodontist, 88(3), 363–369. https://doi.org/10.2319/071117-460.1
Cammarata, M. J., Wake, N., Kantar, R. S., Maroutsis, M., Rifkin, W. J., & Hazen, A. (2019). Three-dimensional analysis of donor masks for facial transplantation. Plastic and Reconstructive Surgery, 143(5), 1290e–1297e. https://doi.org/10.1097/PRS.000000000000561
Muhlemann, S., Benic, G. I., Fehmer, V., Hammerle, C. H. F., & Sailer, I. (2019). Randomized controlled clinical trial of digital and conventional workflows for the fabrication of zirconia-ceramic posterior fixed partial dentures. Part II: Time efficiency of CAD-CAM versus conventional laboratory procedures. Journal of Prosthetic Dentistry, 121(2), 252–257. https://doi.org/10.1016/j.prosdent.2018.04.020
Sailer, I., Benic, G. I., Fehmer, V., Hammerle, C. H. F., & Muhlemann, S. (2017). Randomized controlled within-subject evaluation of digital and conventional workflows for the fabrication of lithium disilicate single crowns. Part II: CAD-CAM versus conventional laboratory procedures. Journal of Prosthetic Dentistry, 118(1), 43–48. https://doi.org/10.1016/j.prosdent.2016.09.031
Mangano, C., Luongo, F., Migliario, M., Mortellaro, C., & Mangano, F. G. (2018). Combining intraoral scans, cone beam computed tomography, and face scans: The virtual patient. Journal of Craniofacial Surgery, 29(8), 2241–2246. https://doi.org/10.1097/SCS.0000000000004485
Morton, D., Phasuk, K., Polido, W. D., & Lin, W. S. (2019). Considerations for contemporary implant surgery. Dental Clinics of North America, 63(2), 309–329. https://doi.org/10.1016/j.cden.2018.11.010
Vandenberghe, B. (2018). The digital patient — Imaging science in dentistry. Journal of Dentistry, 74(Suppl 1), S21–S26. https://doi.org/10.1016/j.jdent.2018.04.019
Ho, C. T., Lin, H. H., & Lo, L. J. (2019). Intraoral scanning and setting up the digital final occlusion in three-dimensional planning of orthognathic surgery: Its comparison with the dental model approach. Plastic and Reconstructive Surgery, 143(4), 1027e–1036e. https://doi.org/10.1097/PRS.0000000000005556
Zaragoza-Siqueiros, J., Medellin-Castillo, H. I., de la Garza-Camargo, H., Lim, T., & Ritchie, J. M. (2019). An integrated haptic-enabled virtual reality system for orthognathic surgery planning. Computational Methods in Biomechanics and Biomedical Engineering, 22(15), 1–19. https://doi.org/10.1080/10255842.2019.156817
Farronato, G., Galbiati, G., Esposito, L., Mortellaro, C., Zanoni, F., & Maspero, C. (2018). Three-dimensional virtual treatment planning: Presurgical evaluation. Journal of Craniofacial Surgery, 29(6), e433–e437. https://doi.org/10.1097/SCS.0000000000004455
Helal, H., Wang, Y., Qin, Z., Wang, P., Xiang, Z., & Li, J. (2018). Virtual surgical planning assisted management for three-dimensional dentomaxillofacial deformities. Journal of Craniofacial Surgery, 29(6), e732–e736. https://doi.org/10.1097/SCS.0000000000004643
MedGadget. (2017). Yomi, the first robotic dental surgery system now cleared by FDA. MedGadget. Retrieved July 2019, from https://www.medgadget.com/2017/03/yomi-first-robotic-dental-surgery-system-now-cleared-fda.html
Landaeta-Quinones, C. G., Hernandez, N., & Zarroug, N. K. (2018). Computer-assisted surgery: Applications in dentistry and oral and maxillofacial surgery. Dental Clinics of North America, 62(3), 403–420. https://doi.org/10.1016/j.cden.2018.03.009
Cai, Z., Lian, J., & Shan, X. (2018). Craniomaxillofacial surgery design. In E. D. Rekow (Ed.), Digital Dentistry: A Comprehensive Reference and Preview of the Future (pp. 165–183). Quintessence Publishing.
Guo, C. (2018). The application of surgical navigation technology in head and neck surgery. In E. D. Rekow (Ed.), Digital Dentistry: A Comprehensive Reference and Preview of the Future (pp. 149–164). Quintessence Publishing.
Bover-Ramos, F., Vina-Almunia, J., Cervera-Ballester, J., Penarrocha-Diago, M., & Garcia-Mira, B. (2018). Accuracy of implant placement with computer-guided surgery: A systematic review and meta-analysis comparing cadaver, clinical, and in vitro studies. International Journal of Oral and Maxillofacial Implants, 33, 101–115. https://doi.org/10.11607/jomi.5556
Jiang, W., Ma, L., Zhang, B., Fan, Y., Qu, X., Zhang, X., et al. (2018). Evaluation of the 3D augmented reality-guided intraoperative positioning of dental implants in edentulous mandibular models. International Journal of Oral and Maxillofacial Implants, 33, 1219–1228. https://doi.org/10.11607/jomi.6638
Connert, T., Zehnder, M. S., Amato, M., Weiger, R., Kuhl, S., & Krastl, G. (2018). Microguided endodontics: A method to achieve minimally invasive access cavity preparation and root canal location in mandibular incisors using a novel computer-guided technique. International Endodontic Journal, 51, 247–255. https://doi.org/10.1111/iej.12809
Beumer, H. W., & Puscas, L. (2009). Computer modeling and navigation in maxillofacial surgery. Current Opinion in Otolaryngology & Head and Neck Surgery, 17, 270–273. https://doi.org/10.1097/MOO.0b013e32832cba7d
Kubota, T., & Yoshimoto, G. (2018). Virtual and mixed reality in clinical application. In E. D. Rekow (Ed.), Digital Dentistry: A Comprehensive Reference and Preview of the Future (pp. 357–364). Quintessence Publishing.
Vincent, J. (2019). Ford’s vision for package delivery is a robot that folds up into the back of a self-driving car. The Verge. Retrieved July 29, 2019, from https://www.theverge.com/2019/5/22/18635439/robot-package-delivery-for-agility-robotics-automomous-digit
Crane, L. (2018). Watch robots assemble a flat-pack idea chair in just 9 minutes. The New Scientist. Retrieved July 2019, from https://www.newscientist.com/article/2166741-watch-robots-assemble-a-flat-pack-idea-chair-in-just-9-minutes/
LEGO. (2019). FIRST LEGO League challenge & season info. FIRST (For Inspiration & Recognition of Science & Technology). Retrieved July 2019, from https://www.firstinspires.org/robotics/fll
Schwitzer, G. (2018). New questions about the $3 billion/year robotic surgery business. Health News Review.org. Retrieved July 2019, from https://www.healthewsreview.org/2018/08/new-questions-about-the-3b-year-robotic-surgery-business
Crawford, M. (2016). Top 6 robotic applications in medicine. American Society of Mechanical Engineers. Retrieved July 2019, from https://www.asme.org/topics-resources/content/to-6-robotic-applicaions-in-medicine
JADA. (2001). Robotics in dentistry. Journal of the American Dental Association, 132, 1095.
Otani, T., Raigrodski, A. J., Mancl, L., Kanuma, I., & Rosen, J. (2015). In vitro evaluation of accuracy and precision of automated robotic tooth preparation system for porcelain laminate veneers. Journal of Prosthetic Dentistry, 114, 229–235.
Wang, L., Wang, D., Zhang, Y., Ma, L., Sun, Y., & Lv, P. (2014). An automatic robotic system for three-dimensional tooth crown preparation using a picosecond laser. Lasers in Surgery and Medicine, 46, 573–581. https://doi.org/10.1002/lsm.22274
Yuan, F. S., Wang, Y., Zhang, Y. P., Wang, D. X., & Lyu, P. J. (2017). Study on the appropriate parameters of automatic full crown tooth preparation for dental tooth preparation robot. Zhonghua Kou Qiang Yi Xue Za Zhi, 52, 270–273.
Butscheer, W., Reimeire, F., Rubbert, R., Weise, T., & Sachdeva, R. (2001). Robot and method for bending orthodontic archwires and other medical devices. US Patent No. 6,732,558. Retrieved July 29, 2019, from https://patentimages.storage.googleapis.com/f6/7c/68/84faceb589ae38/US6732558.pdf
Schueller, N. (2019). Dental Axess introduces BenderI, the world’s first portable wire bending machine. Dental Tribune. Retrieved July 23, 2019, from https://eu.dental-tribune.com/news/interview-dental-axess-introduces-benderi-the-worlds-first-portable-wire-bending-machine/
Mott, K. (2017). Changing the future of dentistry with robotics. Dental Products Report. Retrieved July 2019, from http://www.dentalproductsreport.com/dental/article/changing-future-implant-dentistry-robotics
Alfaro, I. V., & Tahmasebi, C. (2017). One appointment crowns and bridges. Oral Health. Retrieved July 2019, from https://www.oralhealthgroup.com/features/one-appointment-crowns-bridges
Gu, B. K., Choi, D. J., Park, S. J., Kim, Y. J., & Kim, C. H. (2018). 3D bioprinting technologies for tissue engineering applications. Advances in Experimental Medicine and Biology, 1078, 15–28. https://doi.org/10.1007/978-981-13-0950-2_2
Ma, Y., Xie, L., Yang, B., & Tian, W. (2019). Three-dimensional printing biotechnology for the regeneration of the tooth and tooth-supporting tissues. Biotechnology and Bioengineering, 116, 452–468. https://doi.org/10.1002/bit.26882
Yu, N., Nguyen, T., Cho, Y. D., Kavanagh, N. M., Ghassib, I., & Giannobile, W. V. (2019). Personalized scaffolding technologies for alveolar bone regenerative medicine. Orthodontics & Craniofacial Research, 22(Suppl 1), 69–75. https://doi.org/10.1111/ocr.12275
VanKoevering, K. K., Zopf, D. A., & Hollister, S. J. (2019). Tissue engineering and 3-dimensional modeling for facial reconstruction. Facial Plastic Surgery Clinics of North America, 27, 151–161. https://doi.org/10.1016/j.fsc.2018.08.012
Huang, W., Restrepo, D., Jung, J. Y., Su, F. Y., Liu, Z., Ritchie, R. O., et al. (2019). Multiscale toughening mechanisms in biological materials and bioinspired designs. Advanced Materials, 31, e1901561. https://doi.org/10.1002/adma.201901561
Smay, J. (2018). Robotic casting (direct ink writing) of hydroxyapatite, beta-TCP, and bioglass for alloplastic bone grafts. In E. D. Rekow (Ed.), Digital Dentistry: A Comprehensive Reference and Preview of the Future (pp. 221–233). Quintessence Publishing.
Durban, M. M., Lenhardt, J. M., Wu, A. S., Small, W. T., Bryson, T. M., Perez-Perez, L., et al. (2018). Custom 3D printable silicones with tunable stiffness. Macromolecular Rapid Communications, 39. https://doi.org/10.1002/marc.201700563
Rekow, E. D. (2020). Digital dentistry: The new state of the art—Is it disruptive or destructive?. Dental Materials, 36(1), 9-24.
Published
How to Cite
Issue
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.